134 research outputs found
Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption
Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant
Detecting and staging podoconiosis cases in North West Cameroon: positive predictive value of clinical screening of patients by community health workers and researchers
Background
The suitability of using clinical assessment to identify patients with podoconiosis in endemic communities has previously been demonstrated. In this study, we explored the feasibility and accuracy of using Community Health Implementers (CHIs) for the large scale clinical screening of the population for podoconiosis in North-west Cameroon.
Methods
Before a regional podoconiosis mapping, 193 CHIs and 50 health personnel selected from 6 health districts were trained in the clinical diagnosis of the disease. After training, CHIs undertook community screening for podoconiosis patients under health personnel supervision. Identified cases were later re-examined by a research team with experience in the clinical identification of podoconiosis.
Results
Cases were identified by CHIs with an overall positive predictive value (PPV) of 48.5% [34.1–70%]. They were more accurate in detecting advanced stages of the disease compared to early stages; OR 2.07, 95% CI = 1.15–3.73, p = 0.015 for all advanced stages). Accuracy of detecting cases showed statistically significant differences among health districts (χ2 = 25.30, p = 0.0001).
Conclusion
Podoconiosis being a stigmatized disease, the use of CHIs who are familiar to the community appears appropriate for identifying cases through clinical diagnosis. However, to improve their effectiveness and accuracy, more training, supervision and support are required. More emphasis must be given in identifying early clinical stages and in health districts with relatively lower PPVs
Are Good Intentions Good Enough?: Informed Consent Without Trained Interpreters
OBJECTIVE: To examine the informed consent process when trained language interpreters are unavailable. BACKGROUND: Ensuring sufficient patient understanding for informed consent is especially challenging for patients with Limited English Proficiency (LEP). While US law requires provision of competent translation for LEP patients, such services are commonly unavailable. DESIGN AND PARTICIPANTS: Qualitative data was collected in 8 prenatal genetics clinics in Texas, including interviews and observations with 16 clinicians, and 30 Latina patients. Using content analysis techniques, we examined whether the basic criteria for informed consent (voluntariness, discussion of alternatives, adequate information, and competence) were evident for each of these patients, contrasting LEP patients with patients not needing an interpreter. We present case examples of difficulties related to each of these criteria, and compare informed consent scores for consultations requiring interpretation and those which did not. RESULTS: We describe multiple communication problems related to the use of untrained interpreters, or reliance on clinicians’ own limited Spanish. These LEP patients appear to be consistently disadvantaged in each of the criteria we examined, and informed consent scores were notably lower for consultations which occurred across a language barrier. CONCLUSIONS: In the absence of adequate Spanish interpretation, it was uncertain whether these LEP patients were provided the quality and content of information needed to assure that they are genuinely informed. We offer some low-cost practice suggestions that might mitigate these problems, and improve the quality of language interpretation, which is essential to assuring informed choice in health care for LEP patients
The Energy Computation Paradox and ab initio Protein Folding
The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination
Investigating Behaviour and Population Dynamics of Striped Marlin (Kajikia audax) from the Southwest Pacific Ocean with Satellite Tags
Behaviour and distribution of striped marlin within the southwest Pacific Ocean were investigated using electronic tagging data collected from 2005–2008. A continuous-time correlated random-walk Kalman filter was used to integrate double-tagging data exhibiting variable error structures into movement trajectories composed of regular time-steps. This state-space trajectory integration approach improved longitude and latitude error distributions by 38.5 km and 22.2 km respectively. Using these trajectories as inputs, a behavioural classification model was developed to infer when, and where, ‘transiting’ and ‘area-restricted’ (ARB) pseudo-behavioural states occurred. ARB tended to occur at shallower depths (108±49 m) than did transiting behaviours (127±57 m). A 16 day post-release period of diminished ARB activity suggests that patterns of behaviour were affected by the capture and/or tagging events, implying that tagged animals may exhibit atypical behaviour upon release. The striped marlin in this study dove deeper and spent greater time at ≥200 m depth than those in the central and eastern Pacific Ocean. As marlin reached tropical latitudes (20–21°S) they consistently reversed directions, increased swimming speed and shifted to transiting behaviour. Reversals in the tropics also coincided with increases in swimming depth, including increased time ≥250 m. Our research provides enhanced understanding of the behavioural ecology of striped marlin. This has implications for the effectiveness of spatially explicit population models and we demonstrate the need to consider geographic variation when standardizing CPUE by depth, and provide data to inform natural and recreational fishing mortality parameters
Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola
Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles
- …