1,154 research outputs found
Tensor hypercontraction: A universal technique for the resolution of matrix elements of local, finite-range -body potentials in many-body quantum problems
Configuration-space matrix elements of N-body potentials arise naturally and
ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For
the common specialization of local, finite-range potentials, we develop the
eXact Tensor HyperContraction (X-THC) method, which provides a quantized
renormalization of the coordinate-space form of the N-body potential, allowing
for a highly separable tensor factorization of the configuration-space matrix
elements. This representation allows for substantial computational savings in
chemical, atomic, and nuclear physics simulations, particularly with respect to
difficult "exchange-like" contractions.Comment: Third version of the manuscript after referee's comments. In press in
PRL. Main text: 4 pages, 2 figures, 1 table; Supplemental material (also
included): 14 pages, 2 figures, 2 table
Recommended from our members
Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data
BACKGROUND: Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. METHODS: A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD) undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. RESULTS: Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. CONCLUSION: Hierarchical clustering methods are relevant to developing classifiers of motor activities from data recorded using wearable systems. They allow users to assess feasibility of a classification problem and choose architectures that maximize accuracy. By relying on this approach, the clinical importance of discriminating motor tasks can be easily taken into consideration while designing the classifier
Nuclear Theory and Science of the Facility for Rare Isotope Beams
The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory
for the study of nuclear structure, reactions and astrophysics. Experiments
with intense beams of rare isotopes produced at FRIB will guide us toward a
comprehensive description of nuclei, elucidate the origin of the elements in
the cosmos, help provide an understanding of matter in neutron stars, and
establish the scientific foundation for innovative applications of nuclear
science to society. FRIB will be essential for gaining access to key regions of
the nuclear chart, where the measured nuclear properties will challenge
established concepts, and highlight shortcomings and needed modifications to
current theory. Conversely, nuclear theory will play a critical role in
providing the intellectual framework for the science at FRIB, and will provide
invaluable guidance to FRIB's experimental programs. This article overviews the
broad scope of the FRIB theory effort, which reaches beyond the traditional
fields of nuclear structure and reactions, and nuclear astrophysics, to explore
exciting interdisciplinary boundaries with other areas.
\keywords{Nuclear Structure and Reactions. Nuclear
Astrophysics. Fundamental Interactions. High Performance
Computing. Rare Isotopes. Radioactive Beams.Comment: 20 pages, 7 figure
One-neutron knockout from Ni
The single-particle structure of Ni and level structure of Ni
were investigated with the \mbox{Be (Ni,Ni+)} reaction at 73 MeV/nucleon. An inclusive cross
section of 41.4(12) mb was obtained for the reaction, compared to a theoretical
prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is
exhausted. This reduction in the observed spectroscopic strength is consistent
with that found for lighter well-bound nuclei. One-neutron removal
spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited
states of Ni were deduced.Comment: Phys. Rev. C, accepte
Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25
The results of measurements of the production of neutron-rich nuclei by the
fragmentation of a 76-Ge beam are presented. The cross sections were measured
for a large range of nuclei including fifteen new isotopes that are the most
neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar,
55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced
cross sections of several new nuclei relative to a simple thermal evaporation
framework, previously shown to describe similar production cross sections,
indicates that nuclei in the region around 62-Ti might be more stable than
predicted by current mass models and could be an indication of a new island of
inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200
Electromagnetic Dissociation of 8B and the Rate of the 7Be(p,gamma)8B Reaction in the Sun
In an effort to better determine the 7Be(p,gamma)8B reaction rate, we have
performed inclusive and exclusive measurements of the Coulomb dissociation of
8B. The former was a study of longitudinal momentum distributions of 7Be
fragments emitted in the Coulomb breakup of intermediate energy 8B beams on Pb
and Ag targets. Analysis of these data yielded the E2 contribution to the
breakup cross section. In the exclusive measurement, we determined the cross
section for the Coulomb breakup of 8B on Pb at low relative energies in order
to infer the astrophysical S factor for the 7Be(p,gamma)8B reaction.
Interpreting the measurements with 1st-order perturbation theory, we obtained
SE2/SE1 = 4.7 (+ 2.0,- 1.3) times 10^-4 at Erel = 0.6 MeV, and S17(0) = 17.8 (+
1.4,- 1.2) eV b. Semiclassical 1st-order perturbation theory and fully quantum
mechanical continuum-discretized coupled channels analyses yield nearly
identical results for the E1 strength relevant to solar neutrino flux
calculations, suggesting that theoretical reaction mechanism uncertainties need
not limit the precision of Coulomb breakup determinations of the 7Be(p,gamma)8B
S factor. A recommended value of S17(0) based on a weighted average of this and
other measurements is presented
- …