6,978 research outputs found

    Comparative Efficiency of Retailing Produce by Different Packaging Procedures

    Get PDF

    Piezoelectric mechanism of orientation of a bilayer Wigner crystal in a GaAs matrix

    Full text link
    A mechanism for orientation of bilayer classical Wigner crystals in a piezoelectric medium is considered. For the GaAs system the piezoelectric correction to the electrostatic interaction between electrons is calculated. It is shown that taking into account the correction due to the piezoelectric effect leads to a dependence of the total energy of the electron crystal on its orientation with respect to the crystallographic axes of the surrounding matrix. A generalization of Ewald's method is obtained for calculating the anisotropic interaction between electrons in a Wigner crystal. The method is used to calculate the energy of bilayer Wigner crystals in electron layers parallel to the crystallographic planes (001), (0-11), and (111) as a function of their orientation and the distance between layers, and the energetically most favorable orientation for all types of electron lattices in a bilayer system is found. It is shown that phase transitions between structures with different lattice symmetry in a Wigner crystal can be accompanied by a change of its orientation.Comment: 11 pages, 4 eps figures include

    A search for disordered (glassy) phase in solid 3He deformed in situ

    Full text link
    A disordered (glassy) state has been searched in solid 3He deformed in the course of experiment employing precise measurements of pressure. The analysis of the temperature dependence of the crystal pressure measured at a constant volume shows that the main contribution to the pressure is made by the phonon subsystem, the influence of the disordered phase being very weak. Annealing of the deformed crystal does not affect this state. The results obtained differ greatly from the corresponding data for solid 4He measured in the region of supersolid effects where a pressure excessive in comparison to the phonon one was registered. The excess pressure had a quadratic dependence on temperature, which is typical of a disordered system. Absence of the excess pressure in solid 3He is unclear yet, some speculative interpretations are suggested.Comment: 9 pages, 4 figure

    Spin relaxation in quantum dots with random spin-orbit coupling

    Full text link
    We investigate the longitudinal spin relaxation arising due to spin-flip transitions accompanied by phonon emission in quantum dots where the strength of the Rashba spin-orbit coupling is a random function of the lateral (in-plane) coordinate on the spatial nanoscale. In this case the Rashba contribution to the spin-orbit coupling cannot be completely removed by applying a uniform external bias across the quantum dot plane. Due to the remnant random contribution, the spin relaxation rate cannot be decreased by more than two orders of magnitude even when the external bias fully compensates the regular part of the spin-orbit coupling.Comment: 13 pages, 4 figure

    Cyclotron effect on coherent spin precession of two-dimensional electrons

    Full text link
    We investigate the spin dynamics of high-mobility two-dimensional electrons in GaAs/AlGaAs quantum wells grown along the [001][001] and [110][110] directions by time-resolved Faraday rotation at low temperatures. In measurements on the (001)(001)-grown structures without external magnetic fields, we observe coherent oscillations of the electron spin polarization about the effective spin-orbit field. In non-quantizing magnetic fields applied normal to the sample plane, the cyclotron motion of the electrons rotates the effective spin-orbit field. This rotation leads to fast oscillations in the spin polarization about a non-zero value and a strong increase in the spin dephasing time in our experiments. These two effects are absent in the (110)(110)-grown structure due to the different symmetry of its effective spin-orbit field. The measurements are in excellent agreement with our theoretical model.Comment: 4 pages, 3 figure

    Effect of a tilted magnetic field on the orientation of Wigner crystals

    Full text link
    We study the effect of a tilted magnetic field on the orientation of Wigner crystals by taking account of the width of a quantum well in the zz-direction. It is found that the cohesive energy of the electronic crystal is always lower for the [110][110] direction parallel to the in-plane field. In a realistic sample, a domain structure forms in the electronic solid and each domain orients randomly when the magnetic field is normal to the quantum well. As the field is tilted an angle, the electronic crystal favors to align along a preferred direction which is determined by the in-plane magnetic field. The orientation stabilization is strengthened for wider quantum wells as well as for larger tilted angles. Possible consequence of the tilted field on the transport property in the electronic solid is discussed

    Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests

    Get PDF
    A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe

    Polaron band formation in the Holstein model

    Full text link
    We present numerical exact results for the polaronic band structure of the Holstein molecular crystal model in one and two dimensions. The use of direct Lanczos diagonalization technique, preserving the full dynamics and quantum nature of phonons, allows us to analyze in detail the renormalization of both quasiparticle bandwidth and dispersion by the electron-phonon interaction. For the two-dimensional case some of our exact data are compared with the results obtained in the framework of a recently developed finite cluster strong-coupling perturbation theory.Comment: 10 pages (LaTeX), 6 figures (ps), submitted to Phys. Rev.

    Gettysburg College Sustainability Proposal

    Full text link
    In the fall of 2011, the Environmental Studies capstone class led by Professor Rutherford Platt was asked to write Gettysburg College’s first Sustainability Plan. The goal of the plan was to develop specific sustainable practices for the campus that were related to the three pillars of sustainability: economic, social, and environmental, and how integrating diligent sustainable practices into each of these respected pillars will result in a more conscious campus, community, and future. In 2010, Gettysburg College turned to the Sustainability Tracking Assessment and Rating System (STARS) to quantify the institution’s sustainability efforts, providing a self-check mechanism to encourage sustainability applications to all aspects of the College. The American College and University Presidents’ Climate Commitment was signed in 2007 by former Gettysburg College President Katherine Haley Will, declaring that Gettysburg College would become carbon neutral by 2032. Gettysburg College has made large strides in the search for sustainability, and aims to continue its dedication to furthering sustainable practice. The following plan outlines the six priority areas identified by the Capstone class: progress of the American College and University Presidents’ Climate Commitment, Dining Services, campus green space, community outreach, integration of sustainability into the Gettysburg College Curriculum, and the Sustainability Advisory Committee. The first priority area identified was monitoring and upholding the American College and University Presidents’ Climate Commitment (ACUPCC). Though creating new sustainability initiatives on campus is the driving force towards an increasingly sustainable college and community, it is imperative that these goals be carried out in full to maximize beneficial returns. In order to reach carbon neutrality, Gettysburg College hopes to increase energy efficiency in buildings, incorporate renewable energy sources on campus, and mitigate remaining emissions through the purchase of carbon offsets. To further the College’s progress, it is proposed that Gettysburg College continue its energy-efficient appliance purchasing policy, as well as create a policy to offset all greenhouse gas emissions generated by air travel for students study abroad. As stated by the ACUPCC, a Sustainability Committee should take responsibility for the updates and progress reports required to meet the goal of carbon neutrality. The second priority area identified was sustainability in Dining Services. Gettysburg College is home to 2,600 students, all of whom require three full meals a day. Dining Services accounts for a large fraction of Gettysburg College’s sustainability efforts, already implementing sustainability through composting, buying local produce, and using biodegradable products. The proposed on-campus sales cuts of non-reusable to-go items, a change in campus mentality on food waste, and improved composting practices will translate to an increasingly sustainable campus, as well as a well-fed campus body. The third priority was maintaining green space on campus. Ranked as the 23rd most beautiful campus in the United States by The Best Colleges, Gettysburg College utilizes campus green space to create an atmosphere that is conducive to activity as well as tranquility. The plan proposes that Gettysburg College and its grounds facilities continue their exceptional efforts, focusing on increasing the use of the student garden, creating a new rain garden or social area on campus, and converting unnecessary parking lots into green space. As these additions are completed, they must be introduced to the student body and faculty alike to assure these areas are known and utilized. The fourth priority was utilizing community outreach to spread awareness of sustainability initiatives on and off campus. To connect the sustainability-geared changes proposed in this plan, community outreach at Gettysburg College is assessed to estimate how well these initiatives are communicated and promoted to both potential and enrolled students, faculty, and other concerned parties. To evaluate the efficiency of communication at Gettysburg College, a quantitative assessment is presented to measure the ease of finding the sustainability webpage, the quality of sustainability-related topics available on the webpage, and quality of webpage design. The webpage is in need of improved text to image ratios, locations of sustainability topics, and data displays. Despite not having a link to the sustainability webpage on the Gettysburg College homepage, sustainability events should be covered and presented on the rotational news feed found on the homepage to maximize outreach to interested parties or simply to add to the definition of Gettysburg College. The fifth priority was integrating sustainability into the Curriculum to build a culture on campus that values academic rigor, supports students as they cultivate intellectual and civic passions, and promotes the development of healthy social relationships and behaviors. The proposed Sustainability Committee on Sustainability in the Curriculum (SCC) will hold sustainability workshops for faculty with the aim to instill sustainability into all academic disciplines, providing all Gettysburg graduates with a means to approach their professional careers in a fashion that is conscious of sustainability. The sixth and last priority was the Sustainability Advisory Committee. Established in 2007, the Sustainability Advisory Committee is currently under review, but it is recommended that the committee restructure itself in accordance with the new Sustainability Committee Bylaws. These bylaws aim to define the purposes, membership, governance, and involvement with the college. With a clearly defined set of goals and methodology, the Sustainability Advisory Committee will be able to improve the solidarity of the sustainability movement on campus as a whole. By following the propositions laid out in the Gettysburg College Sustainability Plan, the student body, faculty, and community alike will become a part of a multi-faceted progression toward a more sustainable future
    • …
    corecore