10,274 research outputs found

    Preliminary study of a possible automatic landing system

    Get PDF
    Navigation and control laws for a possible automatic landing system have been investigated. The system makes use of data from an inertial table and either an airborne or ground radar to generate signals that guide the airplane to a landing. All landing maneuvers take place within a zone that extends 6000 m out from the touchdown point, 4000 m on each side of the runway center line, and 540 m high. The results show that the system can adequately control the airplane on steep, curved decelerating approaches to a landing that takes place with small errors from the desired landing point and desired airplane attitude. The system studied would interface well with the scanning beam microwave landing system (MLS). The use of this system with the MLS makes it possible to incorporate an independent landing monitor

    Manned geosynchronous mission requirements and systems analysis study add-on

    Get PDF
    An MOTV mission model was constructed in order to establish the baseline condition for SOC basing. A mission model to reflect satellite servicing was extended. Yearly traffic was projected. Driver missions were categorized. Cost trades and sensitivity to traffic rates were performed and service equipment needs were identified

    Relativistic models of the universe with pressure equal to zero and time-dependent uniformity

    Get PDF
    Zero density and approximate, relativistic models of univers

    Manned Orbital Transfer Vehicle (MOTV). Volume 4: Supporting analysis

    Get PDF
    Generic missions were defined to enable potential users to determine the parameters for suggested user projects. Mission modes were identified for providing operation, interfaces, performance, and cost data for studying payloads. Safety requirements for emergencies during various phases of the mission are considered with emphasis on radiation hazards

    Manned Orbital Transfer Vehicle (MOTV). Volume 6: Five year program plan

    Get PDF
    The five year program plan for the manned orbit transfer vehicle (MOTV) is presented. The planning, schedules, cost estimates, and supporting data (objectives, constraints, assumptions, etc.) associated with the development of the MOTV are discussed. The plan, in addition to the above material, identifies the supporting research and technology required to resolve issues critical to MOTV development

    Manned Orbital Transfer Vehicle (MOTV). Volume 3: Program requirements documents

    Get PDF
    The requirements for geosynchronous orbit capability using the manned orbit transfer vehicle (MOTV) are defined. The program requirements, the mission requirements, and the system and subsystem requirements for the MOTV are discussed. The mission requirements include a geosynchronous Earth orbit vehicle for the construction, servicing, repair and operation of communications, solar power, and Earth observation satellites

    Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook

    Get PDF
    The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented

    Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    Get PDF
    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed

    One-loop approximation for the Heisenberg antiferromagnet

    Full text link
    We use the diagram technique for spin operators to calculate Green's functions and observables of the spin-1/2 quantum Heisenberg antiferromagnet on a square lattice. The first corrections to the self-energy and interaction are taken into account in the chain diagrams. The approximation reproduces main results of Takahashi's modified spin-wave theory [Phys. Rev. B 40, 2494 (1989)] and is applicable in a wider temperature range. The energy per spin calculated in this approximation is in good agreement with the Monte Carlo and small-cluster exact-diagonalization calculations in the range 0 <= T < 1.2J where J is the exchange constant. For the static uniform susceptibility the agreement is good for T < 0.6J and becomes somewhat worse for higher temperatures. Nevertheless the approximation is able to reproduce the maximum in the temperature dependence of the susceptibility near T = 0.9J.Comment: 15 pages, 6 ps figure
    corecore