3,689 research outputs found

    Particulate release from surfaces exposed to a plasma

    Get PDF

    Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: reply

    Get PDF
    In [1,2] an error (by a factor of 1000) in the diffusion rate of monomer in a photopolymer material used by the authors of [3], is presented. In [3] no errors are identified in our analysis and our physical evidence is not addressed. It is implied that our model and our results are disproven by the results in the papers referenced in [3]. In fact these papers do not provide any such quantitative evidence. The observations made regarding the significance of the authors’ contributions, in particular the validity of their model and the practical importance of their material are also discussed. © 2012 Optical Society of Americ

    Dispersion relations for circular single and double dusty plasma chains

    Full text link
    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring) we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration) the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.Comment: 10 pages, 8 fugure

    Collisional Plasma Sheath Model

    Get PDF
    The effects of ion collisionality on the plasma sheath are revealed by a two-fluid model. In contrast to previous work, the ion-neutral collision cross section is modeled using a power law dependence on ion energy. Exact numerical solutions of the model are used to determine the collisional dependence of the sheath width and the ion impact energy at the wall. Approximate analytical solutions appropriate for the collisionless and collisionally dominated regimes are derived. These approximate solutions are used to find the amount of collisionality at the center of the transition regime separating the collisionless and collisional regimes. Rx-the constant ion mean-free-path case, the center of the transition regime for the sheath width is at a sheath width of five mean-free paths. The center of the transition regime for the ion impact energy is at a sheath width of about one-half of a mean-free path

    Eulerian simulation of the fluid dynamics of helicopter brownout

    Get PDF
    A computational model is presented that can be used to simulate the development of the dust cloud that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’ where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and entrainment process. The origin of the model in the statistical mechanics of a distribution of particles governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing the physical properties of the suspended particulates to the local properties of the flow field surrounding the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the predictions of the coupled model against experimental data for particulate entrainment and transport in the flow around a model rotor are encouraging. An application of the coupled model to analyzing the differences in the geometry and extent of the dust clouds that are produced by single main rotor and tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the extent of the dust cloud that is created by the helicopter
    corecore