23 research outputs found

    Plasticity of Least Tern and Piping Plover nesting behaviors in response to sand temperature

    Get PDF
    Birds that nest on the ground in open areas, such as Piping Plovers (Charadrius melodus) and Interior Least Terns (Sternula antillarum athalassos), are exposed to high temperatures in thermally stressful environments. As a result, some ground-nesting avian species have adapted behavioral strategies to maintain thermal regulation of eggs and themselves. We assessed the impact of sand temperature on shorebird nesting behaviors by installing video cameras and thermocouples at 52 Least Tern and 55 Piping Plover nests on the Missouri River in North Dakota during the 2014–2015 breeding seasons. Daily duration and frequency of shading behaviors exhibited a nonlinear relationship with temperature; therefore, we used segmented regressions to determine at what threshold temperature (mean temperature = 25.7âž°C for shading behavior daily frequency and mean temperature = 25.1âž°C for shading behavior daily duration) shorebird adults exhibited a behavioral response to rising sand temperatures. Daily nest attendance of both species decreased with increasing sand temperatures in our system. Frequency and duration of daily shading behaviors were positively correlated with sand temperatures above the temperature threshold. Piping Plovers exhibited more and longer shading behaviors above and below the temperature thresholds (below: frequency = 10.30 ± 1.69 se, duration = 7.29 min ± 2.35 se; above: frequency = 59.27 ± 6.87 se) compared to Least Terns (below: frequency = −1.37 ± 1.98 se, duration = −0.73 min ± 1.51 se; above: frequency = 31.32 ± 7.29 se). The effects of sand temperature on avian ground-nesting behavior will be critical to understand in order to adapt or develop recovery plans in response to climate change

    Demographic Responses of Least Terns and Piping Plovers to the 2011 Missouri River Flood—A Large-Scale Case Study

    Get PDF
    2011 led to substantial changes in abundance and distribution of unvegetated sand habitat. This river system is a major component of the breeding range for interior Least terns (Sternula antillarum; “terns”) and piping plovers (Charadrius melodus; “plovers”), both of which are Federally listed ground-nesting birds that prefer open, unvegetated sand and gravel nesting substrates on sandbars and shorelines. The 2011 flood inundated essentially all tern and plover nesting habitat during 2011, but it had potential to generate post-flood habitat conditions that favored use by terns and plovers in subsequent years. We compared several tern and plover demographic parameters during the pre-flood and post-flood periods on the Garrison Reach and Lake Sakakawea, North Dakota, to determine how this event influenced these species (both species on the Garrison Reach, and plovers only on Lake Sakakawea). The principal parameters we measured (nest survival, chick survival, and breeding population) showed spatial and temporal variation typical of opportunistic species occupying highly variable habitats. There was little evidence that nest survival of least terns differed between pre- and post-flood. During 2012 when habitat was most abundant on the Garrison Reach and Lake Sakakawea, piping plover nest survival was higher than in any other year in the study, but returned to rates comparable to pre-flood years in 2013. Chick survival for terns on the Garrison Reach and plovers on Lake Sakakawea showed a similar pattern to plover nest survival, with the 2012 rate exceeding all other years of the study, and the remaining pre-flood and post-flood years being generally similar but slightly higher in post-flood years. However, plover chick survival on the Garrison Reach in 2012 was similar to pre-flood years, and increased annually thereafter to its highest rate in 2014. Although wide confidence intervals precluded firm conclusions about flood effects on breeding populations, the general pattern suggested lower populations of plovers but higher populations of least terns immediately after the flood. Despite near total absence of breeding habitat on either study area during the flood of 2011, populations of both species persisted after the flood due to their propensity to disperse and/or forgo breeding for at least a year. Tern and plover populations have similarly persisted and recovered after the flood, but their mechanisms for persistence likely differ. Data on tern dispersal is generally lacking, but they are thought to show little fidelity to their natal grounds, have a propensity to disperse potentially long distances, and routinely forgo breeding until their second year, thus a lost opportunity to breed in a given area may be easily overcome. Plovers exhibit stronger demographic ties to the general area in which they previously nested, yet they occupy much broader nesting habitat features than terns and exploit three major landforms in the Dakotas (free-flowing rivers, reservoir shorelines, and wetland shorelines). Consequently, dispersal to and from non-Missouri River habitats and potential to exploit non-traditional habitats likely sustained the Northern Great Plains population through the flood event. Terns and plovers normally occupy similar habitats on the Missouri River and both species experienced similar loss of a breeding season due to the flood. Persistence of these populations after the flood underscores the importance of understanding their unique demographic characteristics and the context within which the Missouri River operates

    Impacts of extreme environmental disturbances on piping plover survival are partially moderated by migratory connectivity

    Get PDF
    Effective conservation for listed migratory species requires an understanding of how drivers of population decline vary spatially and temporally, as well as knowledge of range-wide connectivity between breeding and nonbreeding areas. Environmental conditions distant from breeding areas can have lasting effects on the demography of migratory species, yet these consequences are often the least understood. Our objectives were to 1) evaluate associations between survival and extreme environmental disturbances at nonbreeding areas, including hurricanes, harmful algal blooms, and oil spills, and 2) estimate migratory connectivity between breeding and nonbreeding areas of midcontinental piping plovers (Charadrius melodus). We used capture and resighting data from 5067 individuals collected between 2002 and 2019 from breeding areas across the midcontinent, and nonbreeding areas throughout the Gulf of Mexico and southern Atlantic coasts of North America. We developed a hidden Markov multistate model to estimate seasonal survival and account for unobservable geographic locations. Hurricanes and harmful algal blooms were negatively associated with nonbreeding season survival, but we did not detect a similarly negative relationship with oil spills. Our results indicated that individuals from separate breeding areas mixed across nonbreeding areas with low migratory connectivity. Mixing among individuals in the nonbreeding season may provide a buffering effect against impacts of extreme events on any one breeding region. Our results suggest that understanding migratory connectivity and linking seasonal threats to population dynamics can better inform conservation strategies for migratory shorebirds

    Does Choice of Estimators Influence Conclusions from True Metabolizable Energy Feeding Trials?

    Get PDF
    True metabolizable energy (TME) is a measure of avian dietary quality that accounts for metabolic fecal and endogenous urinary energy losses (EL) of non-dietary origin. The TME is calculated using a bird fed the test diet and an estimate of EL derived from another bird (Paired Bird Correction), the same bird (Self Correction), or several other birds (Group Mean Correction). We evaluated precision of these estimators by using each to calculate TME of three seed diets in blue-winged teal (Anas discors). The TME varied by \u3c2% among estimators for all three diets, and Self Correction produced the least variable TMEs for each. The TME did not differ between estimators in nine paired comparisons within diets, but variation between estimators within individual birds was sufficient to be of practical consequence. Although differences in precision among methods were slight, Self Correction required the lowest sample size to achieve a given precision. Feeding trial methods that minimize variation among individuals have several desirable properties, including higher precision of TME estimates and more rigorous experimental control. Consequently, we believe that Self Correction is most likely to accurately represent nutritional value of food items and should be considered the standard method for TME feeding trials

    Selection Indicates Preference in Diverse Habitats: A Ground-Nesting Bird (Charadrius melodus) Using Reservoir Shoreline

    Get PDF
    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nestsite selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m 2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had,38 % coverage of silt and,10 % slope at the site, and,15 % coverage of vegetation or litter and,31 % slope within the 3-m radius. Gravel was selected for at nest sites (11 % median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservatio

    Model averaged parameter estimates, standard errors (SE), lower 95% confidence limits (LCL), upper 95% confidence limits (UCL), and standardized odds ratios for variables from 20 candidate models we used to examine potential influences on nest-site selection of Piping Plovers at Lake Sakakawea.

    No full text
    <p>Variables with 95% confidence limits that do not overlap 0 are depicted in bold.</p>a<p>Percent coverage of silt in substrate at site.</p>b<p>Percent coverage of pebble in substrate.</p>c<p>Site measurement.</p>d<p>Percent coverage of gravel in substrate.</p>e<p>Presence or absence of a cobble.</p>f<p>Percent bare substrate obstruction (vegetation+leaf litter+small debris).</p>g<p>Distance (m) to shoreline of Lake Sakakawea.</p>h<p>Relative elevation (m) of the nest above the pool level at initiation.</p>i<p>Mean of 4 measurements taken 3 m from the site.</p>j<p>Mean of 4 measurements taken 10 m from the site.</p

    Median and 10<sup>th</sup> and 90<sup>th</sup> percentiles of nest and random sites for variables that influence nest-site selection of Piping Plovers on Lake Sakakawea.

    No full text
    a<p>Percent coverage of silt in substrate at site.</p>b<p>Percent coverage of gravel in substrate at site.</p>c<p>Presence or absence of a cobble.</p>d<p>Relative elevation of the nest above the pool level at initiation.</p>e<p>Slope within 1 m of the site.</p>f<p>Percent bare substrate obstruction (vegetation+leaf litter+small debris).</p>g<p>Slope within 3 m of the site.</p>h<p>Percent coverage of gravel in substrate 10 m from the site.</p

    The most supported 5 of 20 models evaluated to examine factors that influence intra-territory nest-site selection of Piping Plovers at Lake Sakakawea, North Dakota, including number of parameters (K), Akaike's Information Criterion for small sample size (AIC<sub>c</sub>), increase over the lowest AIC<sub>c</sub> (ΔAIC<sub>c</sub>), and Akaike model weight (<i>w</i><sub>i</sub>).

    No full text
    a<p>Percent coverage of silt in substrate at site.</p>b<p>Percent coverage of gravel in substrate.</p>c<p>Site measurement.</p>d<p>Presence or absence of a cobble.</p>e<p>Distance (m) to shoreline of Lake Sakakawea.</p>f<p>Relative elevation (m) of the nest above the pool level at initiation.</p>g<p>Percent bare substrate obstruction (vegetation+leaf litter+small debris).</p>h<p>Mean of 4 measurements taken 3 m from the site.</p>i<p>Mean of 4 measurements taken 10 m from the site.</p>j<p>Percent coverage of pebble in substrate.</p

    Demographic Responses of Least Terns and Piping Plovers to the 2011 Missouri River Flood—A Large-Scale Case Study

    Get PDF
    2011 led to substantial changes in abundance and distribution of unvegetated sand habitat. This river system is a major component of the breeding range for interior Least terns (Sternula antillarum; “terns”) and piping plovers (Charadrius melodus; “plovers”), both of which are Federally listed ground-nesting birds that prefer open, unvegetated sand and gravel nesting substrates on sandbars and shorelines. The 2011 flood inundated essentially all tern and plover nesting habitat during 2011, but it had potential to generate post-flood habitat conditions that favored use by terns and plovers in subsequent years. We compared several tern and plover demographic parameters during the pre-flood and post-flood periods on the Garrison Reach and Lake Sakakawea, North Dakota, to determine how this event influenced these species (both species on the Garrison Reach, and plovers only on Lake Sakakawea). The principal parameters we measured (nest survival, chick survival, and breeding population) showed spatial and temporal variation typical of opportunistic species occupying highly variable habitats. There was little evidence that nest survival of least terns differed between pre- and post-flood. During 2012 when habitat was most abundant on the Garrison Reach and Lake Sakakawea, piping plover nest survival was higher than in any other year in the study, but returned to rates comparable to pre-flood years in 2013. Chick survival for terns on the Garrison Reach and plovers on Lake Sakakawea showed a similar pattern to plover nest survival, with the 2012 rate exceeding all other years of the study, and the remaining pre-flood and post-flood years being generally similar but slightly higher in post-flood years. However, plover chick survival on the Garrison Reach in 2012 was similar to pre-flood years, and increased annually thereafter to its highest rate in 2014. Although wide confidence intervals precluded firm conclusions about flood effects on breeding populations, the general pattern suggested lower populations of plovers but higher populations of least terns immediately after the flood. Despite near total absence of breeding habitat on either study area during the flood of 2011, populations of both species persisted after the flood due to their propensity to disperse and/or forgo breeding for at least a year. Tern and plover populations have similarly persisted and recovered after the flood, but their mechanisms for persistence likely differ. Data on tern dispersal is generally lacking, but they are thought to show little fidelity to their natal grounds, have a propensity to disperse potentially long distances, and routinely forgo breeding until their second year, thus a lost opportunity to breed in a given area may be easily overcome. Plovers exhibit stronger demographic ties to the general area in which they previously nested, yet they occupy much broader nesting habitat features than terns and exploit three major landforms in the Dakotas (free-flowing rivers, reservoir shorelines, and wetland shorelines). Consequently, dispersal to and from non-Missouri River habitats and potential to exploit non-traditional habitats likely sustained the Northern Great Plains population through the flood event. Terns and plovers normally occupy similar habitats on the Missouri River and both species experienced similar loss of a breeding season due to the flood. Persistence of these populations after the flood underscores the importance of understanding their unique demographic characteristics and the context within which the Missouri River operates
    corecore