527 research outputs found

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of RNAi to analyse gene function <it>in vitro </it>is now widely applied in biological research. However, several difficulties are associated with its use <it>in vivo</it>, mainly relating to inefficient delivery and non-specific effects of short RNA duplexes in animal models. The latter can lead to false positive results when real-time RT-qPCR alone is used to measure target mRNA knockdown.</p> <p>Findings</p> <p>We observed that detection of an apparent siRNA-mediated knockdown <it>in vivo </it>was dependent on the primers used for real-time RT-qPCR measurement of the target mRNA. Two siRNAs specific for <it>RRM1 </it>with equivalent activity <it>in vitro </it>were administered to A549 xenografts via intratumoural injection. In each case, apparent knockdown of <it>RRM1 </it>mRNA was observed only when the primer pair used in RT-qPCR flanked the siRNA cleavage site. This false-positive result was found to result from co-purified siRNA interfering with both reverse transcription and qPCR.</p> <p>Conclusions</p> <p>Our data suggest that using primers flanking the siRNA-mediated cleavage site in RT-qPCR-based measurements of mRNA knockdown <it>in vivo </it>can lead to false positive results. This is particularly relevant where high concentrations of siRNA are introduced, particularly via intratumoural injection, as the siRNA may be co-purified with the RNA and interfere with downstream enzymatic steps. Based on these results, using primers flanking the siRNA target site should be avoided when measuring knockdown of target mRNA by real-time RT-qPCR.</p

    Cross-Dimensional Mapping of Number, Length and Brightness by Preschool Children

    Get PDF
    Human adults in diverse cultures, children, infants, and non-human primates relate number to space, but it is not clear whether this ability reflects a specific and privileged number-space mapping. To investigate this possibility, we tested preschool children in matching tasks where the dimensions of number and length were mapped both to one another and to a third dimension, brightness. Children detected variation on all three dimensions, and they reliably performed mappings between number and length, and partially between brightness and length, but not between number and brightness. Moreover, children showed reliably better mapping of number onto the dimension of length than onto the dimension of brightness. These findings suggest that number establishes a privileged mapping with the dimension of length, and that other dimensions, including brightness, can be mapped onto length, although less efficiently. Children's adeptness at number-length mappings suggests that these two dimensions are intuitively related by the end of the preschool years

    South African podiatry students’ perceptions of feedback given as part of clinical training

    Get PDF
    Abstract: As part of their clinical training podiatry students spend time in clinical settings treating patients under the supervision of qualified podiatrists. The role and purpose of feedback during such clinical training is to improve students’ knowledge, skills and behaviour. Feedback is an integral part of the learning process that should enhance students’ clinical learning experiences. However, there is no data on podiatry students’ satisfaction or lack thereof about feedback provided during clinical training. The aim of this study was to determine the perceptions of podiatry students on feedback given or received during clinical training..

    Faculty verbal evaluations reveal strategies used to promote medical student performance

    Get PDF
    Background: Preceptors rarely follow medical students&#x2019; developing clinical performance over time and across disciplines. This study analyzes preceptors&#x2019; descriptions of longitudinal integrated clerkship (LIC) students&#x2019; clinical development and their identification of strategies to guide students&#x2019; progress. Methods: We used a common evaluation framework, reporter-interpreter-manager-educator, to guide multidisciplinary LIC preceptors&#x2019; discussions of students&#x2019; progress. We conducted thematic analysis of transcripts from preceptors&#x2019; (seven longitudinal ambulatory preceptors per student) quarterly group discussions of 15 students&#x2019; performance over one year. Results: All students&#x2019; clinical development progressed, although most experienced obstacles. Lack of structure in the history and physical exam commonly obstructed progression. Preceptors used templates for data gathering, and modeling or experiences in the inpatient setting to provide time and solidify structure. To advance students&#x2019; knowledge acquisition, many preceptors identified focused learning topics with their students; to promote application of knowledge, preceptors used reasoning strategies to teach the steps involved in synthesizing clinical data. Preceptors shared accountability for helping students advance as the LIC allowed them to follow students&#x2019; response to teaching strategies. Discussion: These results depict preceptors&#x2019; perceptions of LIC students&#x2019; developmental continuum and illustrate how multidisciplinary preceptors can use a common evaluation framework to identify strategies to improve performance and follow students&#x2019; performance longitudinally

    FishNet: an online database of zebrafish anatomy

    Get PDF
    Background: Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results: To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D) models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion: FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D

    Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Get PDF
    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step
    corecore