21 research outputs found

    Analisis Portofolio Optimal Dengan Single Index Model Untuk Meminimumkan Risiko Bagi Investor Di Bursa Efek Indonesia (Studi Pada Saham Indeks Kompas 100 Periode Februari 2010-juli 2014)

    Full text link
    Investments can be made in the capital market, capital market instruments which are mostly attractive for investors is stock. Stock provides a return in the form of capital gains and dividends yield, not only noticing the return, investors need to pay attention to the investments risk. Unsystematis risk can be minimized by forming the optimal portfolio using one of the methods that is single index model. Study purpose is to knowing the stocks forming the optimal portfolio, the proportion of funds allocated to each stocks, the level of expectation return and risk.The method used in this research is descriptive research method with a quantitative approach. The samples used were 46 stocks in Kompas 100 Index, which meets the criteria for sampling. The results showed that 12 stocks of forming optimal portfolio, the stocks of which are UNVR, TRAM, MNCN, BHIT, JSMR, BMTR, GJTL, KLBF, AALI, CPIN, AKRA, and ASRI. Stock with highest proportion of funds is TRAM (23,52%), stock with lowest proportion of funds is AALI (0,62%). Portfolio which are formed will give return expectations by 3,05477% and carry the risk for about 0,1228%

    Profiling B‑Type Natriuretic Peptide Cleavage Peptidoforms in Human Plasma by Capillary Electrophoresis with Electrospray Ionization Mass Spectrometry

    No full text
    B-type Natriuretic Peptide (BNP) is a biologically active circulating hormone. Plasma concentrations of BNP are routinely used in the diagnosis of heart failure, and the intravenous infusion of recombinant BNP can be used for heart failure treatment. Like many bioactive polypeptides, multiple plasma enzymes are known to cleave circulating BNP, and as part of the CVD-B/D-HPP mandate, we sought to develop a technique capable of profiling these catabolic processes in plasma. We used a neutral-coated capillary electrophoresis-electrospray ionization (CESI) separation system coupled with high-resolution mass spectrometry to profile the proteolysis of exogenous recombinant BNP<sub>1–32</sub> in plasma. Our method utilizes electrokinetic injection of minimally processed plasma samples to simultaneously monitor the dynamic generation and breakdown of at least five BNP peptidoforms in plasma. By integrating multisegment injection, our method can produce a multipoint BNP proteolytic profile for one sample within an hour. We envision applying this method to assess the potential relation between plasma-based BNP proteolysis and heart failure as well as a means of monitoring BNP bioavailability after therapeutic infusion

    Scatter plot of iTRAQ quantified log2 (protein ratio) and MRM quantified log2 (protein ratio).

    No full text
    <p>(A) iTRAQ versus MRM log2(12 DAP/6 DAP). (B) iTRAQ versus MRM log2(18 DAP/6 DAP). (C) iTRAQ versus MRM log2(24 DAP/6 DAP). (D) iTRAQ versus MRM log2(30 DAP/6 DAP).</p

    Stress Responsive Proteins Are Actively Regulated during Rice (<i>Oryza sativa</i>) Embryogenesis as Indicated by Quantitative Proteomics Analysis

    Get PDF
    <div><p>Embryogenesis is the initial step in a plant’s life, and the molecular changes that occur during embryonic development are largely unknown. To explore the relevant molecular events, we used the isobaric tags for relative and absolute quantification (iTRAQ) coupled with the shotgun proteomics technique (iTRAQ/Shotgun) to study the proteomic changes of rice embryos during embryogenesis. For the first time, a total of 2 165 unique proteins were identified in rice embryos, and the abundances of 867 proteins were actively changed based on the statistical evaluation of the quantitative MS/MS signals. The quantitative data were then confirmed using multiple reactions monitoring (MRM) and were also supported by our previous study based on two-dimensional gel electrophoresis (2 DE). Using the proteome at 6 days after pollination (DAP) as a reference, cluster analysis of these differential proteins throughout rice embryogenesis revealed that 25% were up-regulated and 75% were down-regulated. Gene Ontology (GO) analysis implicated that most of the up-regulated proteins were functionally categorized as stress responsive, mainly including heat shock-, lipid transfer-, and reactive oxygen species-related proteins. The stress-responsive proteins were thus postulated to play an important role during seed maturation.</p></div

    Cluster result of the significantly regulated proteins.

    No full text
    <p>(A) Cluster heatmap of significantly regulated proteins using the protein abundance information. The five columns from left to right are labeled 6, 12, 18, 24 and 30 DAP at the top of the heatmap. The left braces indicate the two groups classified by cluster analysis. (B) Color diagram of the heatmap.</p

    Evaluation of three technical replicates.

    No full text
    <p>(A) Venn chart showing the overlap of the identified proteins from the three replications. (B) Accumulated frequency graph of the coefficient of variation.</p

    Rice embryogenesis stages and embryo phenotypes for each stage.

    No full text
    <p>(A) Embryogenesis stages and sampling time settings. (B) Pattern of embryo length change during embryogenesis. (C) Pattern of embryo weight change during embryogenesis. (D) Newly germinated bud length of embryos during embryogenesis. For (B) (C) and (D), the error bars indicate the standard derivation.</p

    Relative abundance of lipid transfer proteins during embryogenesis.

    No full text
    <p>The error bars indicate the standard derivation. 1 indicates the LTP with Locus ID LOC_Os07g11630.1; 2, LOC_Os03g02050.1; 3, LOC_Os12g02320.1; 4, LOC_Os11g40530.1; 5, LOC_Os08g03690.1; 6, LOC_Os05g40010.1; 7, LOC_Os01g60740.2; 8, LOC_Os11g02400.1; 9, LOC_Os10g36170.1.</p

    Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics

    No full text
    The strategy of sequential window acquisition of all theoretical fragment ion spectra (SWATH) is emerging in the field of label-free proteomics. A critical consideration for the processing of SWATH data is the quality of the ion library (or mass spectrometric reference map). As the availability of open spectral libraries that can be used to process SWATH data is limited, most users currently create their libraries in-house. Herein, we propose an approach to construct an expanded ion library using the data-dependent acquisition (DDA) data generated by fractionation proteomics. We identified three critical elements for achieving a satisfactory ion library during the iterative process of our ion library expansion, including a correction of the retention times (RTs) gained from fractionation proteomics, appropriate integrations of the fractionated proteomics into an ion library, and assessments of the impact of the expanded ion libraries to data mining in SWATH. Using a bacterial lysate as an evaluation material, we employed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to fractionate the lysate proteins and constructed the expanded ion library using the fractionation proteomics data. Compared with the ion library built from the unfractionated proteomics, approximately 20% more peptides were extracted from the expanded ion library. The extracted peptides, moreover, were acceptable for further quantitative analysis
    corecore