43 research outputs found
Analisis Portofolio Optimal Dengan Single Index Model Untuk Meminimumkan Risiko Bagi Investor Di Bursa Efek Indonesia (Studi Pada Saham Indeks Kompas 100 Periode Februari 2010-juli 2014)
Investments can be made in the capital market, capital market instruments which are mostly attractive for investors is stock. Stock provides a return in the form of capital gains and dividends yield, not only noticing the return, investors need to pay attention to the investments risk. Unsystematis risk can be minimized by forming the optimal portfolio using one of the methods that is single index model. Study purpose is to knowing the stocks forming the optimal portfolio, the proportion of funds allocated to each stocks, the level of expectation return and risk.The method used in this research is descriptive research method with a quantitative approach. The samples used were 46 stocks in Kompas 100 Index, which meets the criteria for sampling. The results showed that 12 stocks of forming optimal portfolio, the stocks of which are UNVR, TRAM, MNCN, BHIT, JSMR, BMTR, GJTL, KLBF, AALI, CPIN, AKRA, and ASRI. Stock with highest proportion of funds is TRAM (23,52%), stock with lowest proportion of funds is AALI (0,62%). Portfolio which are formed will give return expectations by 3,05477% and carry the risk for about 0,1228%
Goose IFIT5 positively regulates goose astrovirus replication in GEF cells
ABSTRACT: Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression
Virus usurps alternative splicing to clear the decks for infection
Abstract Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future
The Appropriate Particle Size of Dazomet Can Ensure the Soil Fumigation Effect from the Source
Dazomet (DZ) is a soil fumigant that has been used for decades at many countries, however it was reported to have caused phytotoxicity and reduced crop yield in many countries. In this experiment, in order to clarify whether the diameter of DZ is related to phytotoxicity, this research investigated the degradation rate of DZ with different diameter ranges under three soil types held at 15, 20 or 30% soil water content at 4, 15, 25 or 37 °C, and monitored concentrations of methyl isothiocyanate (MITC) produced when Shunyi soil was fumigated with DZ using the different particle sizes ranges. When the soil water content and temperature increased, the degradation rate of DZ with different particle sizes accelerated. However, the degradation rate of DZ with large particle sizes was still lower than small particle sizes. NO3−-N, available phosphorus (AP), available potassium (AK), pH and silt content in the soil were all significantly positively correlated with <100 μm DZ, and significantly negatively correlated with 300–400 μm and >400 μm DZ. However, organic matter (OM) and sand content produced the opposite result. The maximum concentration of MITC produced by 100–300 μm of DZ in 25 °C Shunyi soil at 30% water content were 102.2 mg/kg at 24 h. DZ produced peaks significantly higher and earlier at 30% than at 20% soil water content. We recommend selecting DZ manufactured with particle in the range of 100 to 300 μm, fumigating at about 25 °C and ensuring that about 30% soil water content is present in the soil immediately after fumigation
Recommended from our members
Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications
Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of βΠwith a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted
Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications
Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of βΠwith a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted
Stress Responsive Proteins Are Actively Regulated during Rice (<i>Oryza sativa</i>) Embryogenesis as Indicated by Quantitative Proteomics Analysis
<div><p>Embryogenesis is the initial step in a plant’s life, and the molecular changes that occur during embryonic development are largely unknown. To explore the relevant molecular events, we used the isobaric tags for relative and absolute quantification (iTRAQ) coupled with the shotgun proteomics technique (iTRAQ/Shotgun) to study the proteomic changes of rice embryos during embryogenesis. For the first time, a total of 2 165 unique proteins were identified in rice embryos, and the abundances of 867 proteins were actively changed based on the statistical evaluation of the quantitative MS/MS signals. The quantitative data were then confirmed using multiple reactions monitoring (MRM) and were also supported by our previous study based on two-dimensional gel electrophoresis (2 DE). Using the proteome at 6 days after pollination (DAP) as a reference, cluster analysis of these differential proteins throughout rice embryogenesis revealed that 25% were up-regulated and 75% were down-regulated. Gene Ontology (GO) analysis implicated that most of the up-regulated proteins were functionally categorized as stress responsive, mainly including heat shock-, lipid transfer-, and reactive oxygen species-related proteins. The stress-responsive proteins were thus postulated to play an important role during seed maturation.</p></div
Scatter plot of iTRAQ quantified log2 (protein ratio) and MRM quantified log2 (protein ratio).
<p>(A) iTRAQ versus MRM log2(12 DAP/6 DAP). (B) iTRAQ versus MRM log2(18 DAP/6 DAP). (C) iTRAQ versus MRM log2(24 DAP/6 DAP). (D) iTRAQ versus MRM log2(30 DAP/6 DAP).</p