104 research outputs found
Plasmon assisted photonic crystal quantum dot sensors
We report Quantum Dot Infrared Detectors (QDIP) where light coupling to the self assembled quantum dots is achieved through plasmons occurring at the metal-semiconductor interface. The detector structure consists of an asymmetric InAs/InGaAs/GaAs dots-in-a-well (DWELL) structure and a thick layer of GaAs sandwiched between two highly doped n-GaAs contact layers, grown on a semi-insulating GaAs substrate. The aperture of the detector is covered with a thin metallic layer which along with the dielectric layer confines light in the vertical direction. Sub-wavelength two-dimensional periodic patterns etched in the metallic layer covering the aperture of the detector and the active region creates a micro-cavity that concentrate light in the active region leading to intersubband transitions between states in the dot and the ones in the well. The sidewalls of the detector were also covered with metal to ensure that there is no leakage of light into the active region other than through the metal covered aperture. An enhanced spectral response when compared to the normal DWELL detector is obtained despite the absence of any aperture in the detector. The spectral response measurements show that the Long Wave InfraRed (LWIR) region is enhanced when compared to the Mid Wave InfraRed (MWIR) region. This may be due to coupling of light into the active region by plasmons that are excited at the metal-semiconductor interface. The patterned metal-dielectric layers act as an optical resonator thereby enhancing the coupling efficiency of light into the active region at the specified frequency. The concept of plasmon-assisted coupling is in principle technology agnostic and can be easily integrated into present day infrared sensors
Performance of the tsunami forecast system for the Indian Ocean
The Indian Tsunami Early Warning System (ITEWS)
at the Indian National Centre for Ocean Information
Services, Hyderabad, is responsible for issuing
tsunami bulletins in India. The tsunami centre oper-
ates on a 24×7 basis and monitors seismological sta-
tions, bottom pressure recorders and tidal stations
throughout the Indian Ocean to evaluate potentially
tsunamigenic earthquakes and disseminating tsunami
bulletins. The end-to-end capabilities of this warning
system have been well proven during all the tsunami-
genic earthquakes that occurred since September
2007. Comparison of the earthquake parameters estimated by ITEWS with other international seismological agencies suggests that the system is performing
well and has achieved the target set up by the Inter-
governmental Oceanographic Commission
Monthly mean wind stress along the coast of the north Indian Ocean
Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-°-latitude by two-°-longitude squares along the coast of the north Indian Ocean. The data source for the computation is the sixty-year mean resultant winds of Hastenrath and Lamb. The main features exhibited by the components, taking the longshore components as positive (negative) when the Ekman transport is away from (towards) the coast, are: (1) Along the coasts of Somalia and Arabia, the magnitude of the wind stress is among the highest in the north Indian Ocean, and its direction is generally parallel to the coastline. This results in a longshore component which is large (as high as 2·5 dyne/cm2) and positive during the southwest monsoon, and weaker (less than 0·5 6 dyne/cm2) and negative during the northeast monsoon. (2) Though weak (less than 0·5 2 dyne/cm2) during the northeast monsoon, the monthly-mean longshore component along the west coast of India remains positive throughout the year. The magnitude of the offshore component during the southwest monsoon is much larger than that of the longshore component. (3) The behaviour of the wind stress components along the east coast of India is similar to that along the Somalia-Arabia coast, but the magnitudes are much smaller
Injection of oxygenated Persian Gulf Water into the southern Bay of Bengal
Persian Gulf Water (PGW) is an oxygenated, high-salinity water mass that has recently been detected in the Bay of Bengal (BoB). However, little is known about the transport pathways of PGW into the BoB. Ocean glider observations presented here demonstrate the presence of PGW in the southwestern BoB. Output from an ocean reanalysis product shows that this PGW signal is associated with a northward-flowing filament of high-salinity water. Particle tracking experiments reveal two pathways: one in the eastern Arabian Sea that takes a minimum of 2 years and another in the western Arabian Sea that takes a minimum of 3 years. The western pathway connects to the BoB via equatorial currents. The greatest influx of PGW occurs between 82° and 87°E during the southwest monsoon. We propose that injection of PGW to the BoB oxygen minimum zone (OMZ) contributes to keeping oxygen concentrations in the BoB above the level at which denitrification occurs
Scaling up evidence-based approaches to tuberculosis screening in prisons
People deprived of liberty have among the highest rates of tuberculosis globally. The incidence of tuberculosis is ten times greater than the incidence of tuberculosis in the general population. In 2021, WHO updated its guidance to strongly recommend systematic screening for tuberculosis in prisons and penitentiary systems. Which case-finding strategies should be adopted, and how to effectively implement these strategies in these settings, will be crucial questions facing ministries of health and justice. In this Viewpoint, we review the evidence base for tuberculosis screening and diagnostic strategies in prisons, highlighting promising approaches and knowledge gaps. Drawing upon past experiences of implementing active case-finding and care programmes in settings with a high tuberculosis burden, we discuss challenges and opportunities for improving the tuberculosis diagnosis and treatment cascade in these settings. We argue that improved transparency in reporting of tuberculosis notifications and outcomes in prisons and renewed focus and resourcing from WHO and other stakeholders will be crucial for building the commitment and investments needed from countries to address the continued crisis of tuberculosis in prisons
Plasmon assisted photonic crystal quantum dot sensors
We report Quantum Dot Infrared Detectors (QDIP) where light coupling to the self assembled quantum dots is achieved through plasmons occurring at the metal-semiconductor interface. The detector structure consists of an asymmetric InAs/InGaAs/GaAs dots-in-a-well (DWELL) structure and a thick layer of GaAs sandwiched between two highly doped n-GaAs contact layers, grown on a semi-insulating GaAs substrate. The aperture of the detector is covered with a thin metallic layer which along with the dielectric layer confines light in the vertical direction. Sub-wavelength two-dimensional periodic patterns etched in the metallic layer covering the aperture of the detector and the active region creates a micro-cavity that concentrate light in the active region leading to intersubband transitions between states in the dot and the ones in the well. The sidewalls of the detector were also covered with metal to ensure that there is no leakage of light into the active region other than through the metal covered aperture. An enhanced spectral response when compared to the normal DWELL detector is obtained despite the absence of any aperture in the detector. The spectral response measurements show that the Long Wave InfraRed (LWIR) region is enhanced when compared to the Mid Wave InfraRed (MWIR) region. This may be due to coupling of light into the active region by plasmons that are excited at the metal-semiconductor interface. The patterned metal-dielectric layers act as an optical resonator thereby enhancing the coupling efficiency of light into the active region at the specified frequency. The concept of plasmon-assisted coupling is in principle technology agnostic and can be easily integrated into present day infrared sensors
Hydrography and water masses in the southeastern Arabian Sea during March-June 2003
This paper describes the hydrographic observations in the southeastern Arabian Sea (SEAS) during two cruises carried out in March-June 2003 as part of the Arabian Sea Monsoon Experiment. The surface hydrography during March-April was dominated by the intrusion of low-salinity waters from the south; during May-June, the low-salinity waters were beginning to be replaced by the high-salinity waters from the north. There was considerable mixing at the bottom of the surface mixed layer, leading to interleaving of low-salinity and high-salinity layers. The flow paths constructed following the spatial patterns of salinity along the sections mimic those inferred from numerical models. Time-series measurements showed the presence of Persian Gulf and Red Sea Waters in the SEAS to be intermittent during both cruises: they appeared and disappeared during both the fortnight-long time series
Performance of the ocean state forecast system at Indian National Centre for Ocean Information Services
The reliability of the operational Ocean State Forecast system at the Indian National Centre for Ocean Information Services (INCOIS) during tropical cyclones that affect the coastline of India is described in this article. The performance of this system during cyclone Thane that severely affected the southeast coast of India during the last week of December 2011 is reported here. Spec-tral wave model is used for forecasting the wave fields generated by the tropical cyclone and vali-dation of the same is done using real-time automated observation systems. The validation results indicate that the forecasted wave parameters agree well with the measurements. The feedback from the user community indicates that the forecast was reliable and highly useful. Alerts based on this operational ocean state forecast system are thus useful for protecting the property and lives of the coastal communities along the coastline of India. INCOIS is extending this service for the benefit of the other countries along the Indian Ocean rim
Wave forecasting and monitoring during very severe cyclone Phailin in the Bay of Bengal
Wave fields, both measured and forecast during the very severe cyclone Phailin, are discussed in this communication. Waves having maximum height of 13.54 m were recorded at Gopalpur, the landfall point of the cyclone. The forecast and observed significant wave heights matched well at Gopalpur with correlation coefficient of 0.98, RMS error of 0.35 m and scatter index of 14%. Forecasts were also validated in the open ocean and found to be reliable (scatter index < 15%). The study also revealed the presence of Southern Ocean swells with a peak period of 20-22 sec hitting Gopalpur coast along with the cyclone-generated waves
Observed anomalous upwelling in the Lakshadweep Sea during the summer monsoon season of 2005
Repeat near-fortnightly expendable bathythermograph (XBT) transects made along Kochi-Kavaratti (KK) shipping lane in the Lakshadweep Sea (LS) during 2002–2006 are examined to describe the observed year-to-year variability of upwelling during summer monsoon season (SMS). Among all the years, the upwelling characterized by up-sloping of 25°C isotherm is relatively weaker and persisted until November during SMS of 2005 and is stronger during the SMS of 2002. As a result of prolonged upwelling, the sea surface temperature has shown cooling extending into the postmonsoon season. The estimated marine pelagic fish landings along the southwest coast of India (SWCI) have also shown increase until December. The governing mechanisms both in terms of local and remote forcings are examined to explain the observed anomalous upwelling during SMS of 2005. The equatorward alongshore wind stress (WS) along the KK XBT transect persisted in a transient manner beyond September only during SMS of 2005. The westerly wind bursts over the equator during the winter of 2004–2005 are both short-lived and relatively weaker triggering weaker upwelling Kelvin waves that propagated into LS in the following SMS of 2005. The observed distribution of negative sea surface height anomaly in the LS is relatively weaker during the SMS of 2005 and lasted longer. The correlation analysis suggests that the local alongshore WS off the SWCI and the remote forcing from the southern coast of Sri Lanka has greater influence on the observed interannual variability of upwelling in the LS when compared to the remote forcing from the equator
- …