19 research outputs found

    Fabrication of AgBr/boron-doped reduced graphene oxide aerogels for photocatalytic removal of Cr(VI) in water

    Get PDF
    AgBr nanoparticles on boron-doped reduced graphene oxide aerogels (AgBr/B-RGO) are synthesized by a facile hydrothermal method, which shows a superior performance in the photoreduction of toxic hexavalent chromium (CrVI) in aqueous media under visible light irradiation. The composition and structure of the samples have been characterized by using XPS, Raman, XRD, TEM and SEM measurements. As compared with that of AgBr on none-doped reduced graphene oxide aerogels (AgBr/RGO), the improved photocatalytic properties, can be attributed to the introduction of boron atoms in reduced graphene oxide (RGO), bringing in the improvement of electron transfer efficiency, and the depression of the recombination of photo-excited electrons and holes. Further tests in the photoreduction of CrVI reveal that the obtained AgBr/B-RGO presents excellent cycling performance with an interesting increase in the photocatalytic efficiency upon cycling number. This observation can be explained by the fact that the gradual emergence of Ag0 formed from the photo-induced decomposition of AgBr, introduces a Surface Plasmon Resonance (SPR) effect to the system. The approach herein reported could be extended to the design and fabrication of other photocatalysts with high performance that combine the boron-doped graphene and SPR effect

    Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose

    No full text
    In this study, a nano Ag-CuO/rGO (reduced graphene oxide) composite was designed and constructed as a novel nonenzymatic glucose sensor. The composite was fabricated through a one-step synthesis process. In the process, Ag-CuO with an average particle size of 10 nm formed and dispersed homogeneously on the surface of rGO sheets. When used for nonenzymatic glucose sensing, the resultant Ag-CuO/rGO composite showed a high sensitivity of 214.37 μA mM −1 cm −2 and an extremely wide linear response from 0.01 to 28 mM with a 0.76 μM detection limit (S/N = 3) at +0.6 V. The excellent sensing properties of the composite are probably due to the synergistic effect of the combination of Ag, CuO nanoparticles and rGO. The electron transfer is improved by the addition of Ag nanoparticles, and the composite electrode possesses larger surface area due to the rGO. The Ag-CuO/rGO composite doe not only show the good catalytic activity, excellent selectivity but also outstanding long term stability, good reproducibility, which makes it a novel type of composite for nonenzymatic glucose sensing

    Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions

    No full text
    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m−1 K−1) and throughplane (4.596 W m−1 K−1) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm−1. The strategy reported here may open a new avenue to the development of high-performance thermal management films

    Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions

    No full text
    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m<sup>–1</sup> K<sup>–1</sup>) and through-plane (4.596 W m<sup>–1</sup> K<sup>–1</sup>) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm<sup>–1</sup>. The strategy reported here may open a new avenue to the development of high-performance thermal management films
    corecore