455 research outputs found
A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data
Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement
Suggested hurricane operational scenario for GOES I-M
Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products
The application of satellite data in the determination of ocean temperatures and cloud characteristics and statistics
The author has identified the following significant results. The major shortcoming of the data was the loss of the infrared radiances from the S191 spectrometer. The cloud thermodynamic phase determination procedure was derived and tested with the data collected by the S192 multispectral scanner. Results of the test indicate a large fraction of the data could be classified thermodynamically. An added bonus was the inclusion of snow in the classification approach. The conclusion to be drawn from this portion of the effort is that in most cases considered ice clouds, liquid water droplet clouds, and snow fields can be spectroscopically separated to a high degree of accuracy
Stereographic cloud heights from the imagery of two scan-synchronized geostationary satellites
Scan synchronization of the sensors of two SMS-GOES satellites yields imagery from which cloud heights can be derived stereographically with a theoretical two-sigma random uncertainty of + or - 0.25 km for pairs of satellites separated by 60 degrees of longitude. Systematic height errors due to cloud motion can be kept below 100 m for all clouds with east-west components of speed below hurricane speed, provided the scan synchronization is within 40 seconds at the mid-point latitude, and the spin axis of each satellite is parallel to that of the earth
Meteorological satellite accomplishments
The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology
Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops
A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques
The rationale and suggested approaches for research geosynchronous satellite measurements for severe storm and mesoscale investigations
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments
The benefits of using short interval satellite images to derive winds for tropical cyclones
During the 1975, 1976, and 1977, NOAA's National Environmental Satellite Service and NASA's Goddard Space Flight Center conducted a cooperative program to determine the optimum resolution and frequency of satellite images for deriving winds to study and forecast tropical cyclones. Rapid scan images were obtained at 7.5 minute interval from SMS-2 for hurricane Eloise and cyclone Caroline, and at 3 minute intervals from GOES-1 for tropical storms Belle, Holly, and Anita. Cloud motions were derived from these images using the Atmospheric and Oceanographic Information Processing System. Winds that were derived from the movement of upper and lower tropospheric level clouds using rapid scan data were compared with the 15 and 30 minute interval data. Greater than 10 (5) times as many clouds could be tracked to obtain winds using 3 and 7.5 minute rapid scan images as when using 15 or 30 minute interval images. A few bright areas within the central dense overcast which appeared to be moving with the winds at low levels were tracked
Supervision and Scholarly Writing: Writing to Learn - Learning to Write
This paper describes an action research project on postgraduate students’ scholarly writing in which I employed reflective approaches to examine and enhance my postgraduate supervisory practice. My reflections on three distinct cycles of supervision illustrate a shift in thinking about scholarly writing and an evolving understanding of how to support postgraduate students’ writing. These understandings provide the foundation for a future-oriented fourth cycle of supervisory practice, which is characterised by three principles, namely the empowerment of students as writers, the technological context of contemporary writing, and ethical issues in writing
Radiation Therapy in Addition to Gross Total Resection of Retroperitoneal Sarcoma Results in Prolonged Survival: Results from a Single Institutional Study
Purpose. Typical treatment of retroperitoneal sarcomas (RPSs) is surgery with or without radiation therapy for localized disease. With surgery alone, local failure rates are as high as 90%; this led to radiation therapy playing an important role in the treatment of RPSs. Methods. Thirty-one patients with retroperitoneal sarcoma treated with gross total resection and radiation therapy make up this retrospective analysis. Nineteen were treated preoperatively and 12 postoperatively (median dose, 59.4 Gy)—sixteen also received intraoperative radiation therapy (IORT) (median dose, 11 Gy). Patients were followed with stringent regimens, including frequent CT scans of the chest, abdomen, and pelvis. Results. With a median follow-up of 19 months (range 1–66 months), the 2-year overall survival (OS) rate is 70% (median, 52 months). The 2-year locoregional control (LRC) rate is 77% (median, 61.6 months). The 2-year distant disease free survival (DDFS) rate is 70% (median not reached). There were no differences in radiation-related acute and late toxicities among patients treated pre- versus postoperatively, whether with or without IORT. Conclusions. Compared to surgery alone, neoadjuvant or adjuvant radiation therapy offers patients with RPS an excellent chance for long-term LRC, DDS, and OS. The integration of modern treatment planning for external beam radiation therapy and IORT allows for higher doses to be delivered with acceptable toxicities
- …