18 research outputs found

    Enhancing carbon sequestration in soil with coal combustion products: a technology for minimising carbon footprints in coal-power generation and agriculture

    Get PDF
    Coal-fired power generation and agriculture account for more than half of global greenhouse gas emissions, but the coal fly ash (CFA) produced in the former can be a resource for reducing emissions from agriculture to minimise environmental footprints in both industries. Our aim in this study was to test how acidic and alkaline CFA addition could minimise loss of C and N from acidic soil, with or without added manure. We determined composition and structural characteristics of acidic and alkaline CFA for their capacity to adsorb organic carbon, but observed poor adsorption because of low concentrations of cenospheres and unburnt carbon as the primary absorbents in the ash. Addition of CFA had no impact on the loss of carbon or nitrogen from unmanured soil in which concentrations of these nutrients were low. Loss of carbon from manured soil was reduced by 36% with alkaline ashes and by 3-fold with acidic ashes; while loss of N was 30–50% lower with acidic ashes, but 28% higher with alkaline ashes, compared with no ash treatment. The increases in C sparing with CFA addition were achieved not by direct C absorption but by restraining microbial population and respiration, and potentially emissions. Alkaline CFA increased soil pH and if used to substitute just 10% of lime for ameliorating soil acidity would reduce CO2 emission associated with the mining of the lime and its eventual dissolution in soil by ~ 2.66 Tg or 2.8% of Australia’s annual agricultural emissions. High concentrations of oxides of phosphorus, silicon, titanium and clay particles in acidic ashes, and oxides of cations in alkaline ashes, were associated with potential for promoting C storage and acidity amelioration in soil

    Seroprevalence of Pandemic (H1N1) 2009 in Pregnant Women in China: An Observational Study

    Get PDF
    BACKGROUND: We investigated the seropositive rates and persistence of antibody against pandemic (H1N1) 2009 virus (pH1N1) in pregnant women and voluntary blood donors after the second wave of the pandemic in Nanjing, China. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples of unvaccinated pregnant women (n = 720) and voluntary blood donors (n = 320) were collected after the second wave of 2009 pandemic in Nanjing. All samples were tested against pH1N1 strain (A/California/7/2009) with hemagglutination inhibition assay. A significant decline in seropositive rates, from above 50% to about 20%, was observed in pregnant women and voluntary blood donors fifteen weeks after the second wave of the pandemic. A quarter of the samples were tested against a seasonal H1N1 strain (A/Brisbane/59/2007). The antibody titers against pH1N1 strain were found to correlate positively with those against seasonal H1N1 strain. The correlation was modest but statistically significant. CONCLUSIONS AND SIGNIFICANCE: The high seropositive rates in both pregnant women and voluntary blood donors suggested that the pH1N1 virus had widely spread in these two populations. Immunity derived from natural infection seemed not to be persistent well

    Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency

    No full text
    Soil-water supply is the main factor limiting crop production across the Loess Plateau in China. A two-year field experiment was conducted to evaluate three possible water management practices - film mulching (FM), supplementary irrigation (SI) and rain-fed (RF, control) - in terms of resource capture and use efficiency in maize (Zen mays L) in this area. The cumulative intercepted photosynthetically active radiation (PAR(i)), air thermal time (TT(air)), soil thermal time (TT(soil)) and evapotranspiration (ET) were monitored during both crop growing seasons, and the effects of the three treatments on the growth dynamics and grain yield (GY) of the maize crops were compared. The results showed that the FM treatment significantly accelerated development of the crop plants, and the SI treatment induced more rapid development in the vegetative stage than the RF treatment. Both FM and SI treatments markedly increased the shoot dry matter (DM) and GY (p < 0.05). The cumulative PAR(i), TT(air) and TT(soil) during the reproductive stage were all significantly increased by both the FM and SI treatments relative to the RF treatment (p <0.05), correlating well with observed increases in DM and GY. Both the FM and SI treatments also resulted in significantly higher (p <0.05) radiation use efficiency, and the FM treatment significantly increased the water use efficiency, by 23-25%, in both years (p < 0.05). The results show that the tested water management practices have significant effects on soil moisture and thermal conditions, and hence the rates of growth and development of maize, in fields on the Loess Plateau, China. (C) 2010 Elsevier B.V. All rights reserved

    Effect of mulch and irrigation practices on soil water, soil temperature and the grain yield of maize (Zea mays L) in Loess Plateau, China

    No full text
    Agricultural management practices, such as mulching and irrigation can change the characteristics of the soil surface and hence influence the hydrothermal properties of the soil. A two-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate the effects of mulch and irrigation practices on moisture and temperature in the upper layers of the soil and on crop growth and yield performance in spring maize (Zea mays L) fields. Four mulching and irrigation treatments were examined: supplementary irrigation (SI), film mulching (FM), straw mulching (SM; in 2008 only) and a rain-fed (RF) control. The soil water (0 - 15 cm depth range) and soil temperature (0 - 5 cm depth range) were studied during the crop growing season and the treatments' yield performances were compared. Over the whole season, the average topsoil water content was significantly higher (P < 0.05) under the SM (23.3% in 2008), SI (21.4% in 2007, 22.5% in 2008) and FM (20.0% in 2007, 21.6% in 2008) treatments than under RF (17.1% in 2007, 19.6% in 2008). The seasonal trends in atmospheric and soil temperatures were similar under all treatments. The seasonally-averaged soil temperature at 07: 00 and 14: 00 h was highest under the FM treatment and lowest under the SM treatment. Plant height and leaf and stem biomass were significantly higher (P < 0.05) under the SI treatment than under the RF and FM treatments from silking to physiological maturity. Both the FM and SI treatments significantly improved (P < 0.05) the crop grain yield (GY) and yield component

    Application of the Hybrid-Maize model for limits to maize productivity analysis in a semiarid environment

    No full text
    Effects of meteorological variables on crop production can be evaluated using various models. We have evaluated the ability of the Hybrid-Maize model to simulate growth, development and grain yield of maize (Zea mays L.) cultivated on the Loess Plateau, China, and applied it to assess effects of meteorological variations on the performance of maize under rain-fed and irrigated conditions. The model was calibrated and evaluated with data obtained from field experiments performed in 2007 and 2008, then applied to yield determinants using daily weather data for 2005-2009, in simulations under both rain-fed and irrigated conditions. The model accurately simulated Leaf Area Index , biomass, and soil water data from the field experiments in both years, with normalized percentage root mean square errors < 25 %. Gr.Y and yield components were also accurately simulated, with prediction deviations ranging from -2.3 % to 22.0 % for both years. According to the simulations, the maize potential productivity averaged 9.7 t ha-1 under rain-fed conditions and 11.53 t ha-1 under irrigated conditions, and the average rain-fed yield was 1.83 t ha-1 less than the average potential yield with irrigation. Soil moisture status analysis demonstrated that substantial potential yield may have been lost due to water stress under rain-fed conditions

    Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China

    No full text
    Soil water supply is the main limiting factor to crop production across the Loess Plateau, China. A 2-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate various water management practices for achieving favorable grain yield (GY) with high water use efficiency (WUE) of spring maize (Zea mays L.). Four practices were examined: a rain-fed (RF) system as the control; supplementary irrigation (SI); film mulching (FM); and straw mulching (SM) (in 2008 only). The soil profile water storage (W) and the crop evapotranspiration (ET) levels were studied during the maize growing season, and the GY as well as the WUE were also compared. The results showed that mean soil water storage in the top 200cm of the profile was significantly (PLoess plateau Water management practice Spring maize Soil water storage Evapotranspiration Water use efficiency

    Clinical characteristics and risk factors of an outbreak with scrub typhus in previously unrecognized areas, Jiangsu province, China 2013.

    No full text
    Scrub typhus, caused by Orientia tsutsugamushi, has emerged recently in Jingjiang City, China where the disease had not been known to exist. We analyzed epidemiological data, clinical characteristics and risk factors of scrub typhus outbreak in Jingjiang City, 2013. The 271 clinically diagnosed patients were predominantly farmers 50 to 69 years old and the peak of onset was early to mid-November. For the 187 laboratory-confirmed cases, the major clinical manifestations of the patients were fever (100%), eschar (88.2%), rash (87.7%), chills (87.7%), and headache (66.8%). A community-based case-control study was carried out to investigate the risk factors of the scrub typhus outbreak. Bundling or moving waste straw (OR=9.0, 95%CI 4.6-17.8) and living at the edge of village (OR=0.6, 95%CI 0.4-0.9) posed the highest risks through single- and multi-variable conditional logistic regression. Phylogenetic analysis of the 56-kDa TSA gene showed that the new cluster (GB-C2) and the previously reported cluster (GB-C1) of O. tsutsugamushi were associated with this outbreak. These findings are useful for the establishment of a detailed control strategy for scrub typhus infection in previously unrecognized areas of Jiangsu Province, China
    corecore