52 research outputs found

    High-order Spatial Interactions Enhanced Lightweight Model for Optical Remote Sensing Image-based Small Ship Detection

    Full text link
    Accurate and reliable optical remote sensing image-based small-ship detection is crucial for maritime surveillance systems, but existing methods often struggle with balancing detection performance and computational complexity. In this paper, we propose a novel lightweight framework called \textit{HSI-ShipDetectionNet} that is based on high-order spatial interactions and is suitable for deployment on resource-limited platforms, such as satellites and unmanned aerial vehicles. HSI-ShipDetectionNet includes a prediction branch specifically for tiny ships and a lightweight hybrid attention block for reduced complexity. Additionally, the use of a high-order spatial interactions module improves advanced feature understanding and modeling ability. Our model is evaluated using the public Kaggle marine ship detection dataset and compared with multiple state-of-the-art models including small object detection models, lightweight detection models, and ship detection models. The results show that HSI-ShipDetectionNet outperforms the other models in terms of recall, and mean average precision (mAP) while being lightweight and suitable for deployment on resource-limited platforms

    Emerging Roles of Liquid–Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling

    Get PDF
    Liquid–liquid Phase Separation (LLPS) of proteins and nucleic acids has emerged as a new paradigm in the study of cellular activities. It drives the formation of liquid-like condensates containing biomolecules in the absence of membrane structures in living cells. In addition, typical membrane-less condensates such as nuclear speckles, stress granules and cell signaling clusters play important roles in various cellular activities, including regulation of transcription, cellular stress response and signal transduction. Previous studies highlighted the biophysical and biochemical principles underlying the formation of these liquid condensates. The studies also showed how these principles determine the molecular properties, LLPS behavior, and composition of liquid condensates. While the basic rules driving LLPS are continuously being uncovered, their function in cellular activities is still unclear, especially within a pathological context. Therefore, the present review summarizes the recent progress made on the existing roles of LLPS in cancer, including cancer-related signaling pathways, transcription regulation and maintenance of genome stability. Additionally, the review briefly introduces the basic rules of LLPS, and cellular signaling that potentially plays a role in cancer, including pathways relevant to immune responses and autophagy

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    software quality prediction using affinity propagation algorithm

    No full text
    Software metrics are collected at various phases of the software development process. These metrics contain the information of the software and can be used to predict software quality in the early stage of software life cycle. Intelligent computing techn

    Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles

    No full text
    Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations

    Voltage-dependent facilitation of Cx46 hemichannels

    No full text
    Gap junction channels are formed by two hemichannels in series (one from each neighboring cell), which are in turn connexin hexamers. Under normal conditions, hemichannels at the plasma membrane are mostly closed but can be opened by changes in membrane voltage, extracellular divalent ion concentration, phosphorylation, pH, and redox potential. Recently, interactions between channels have been found to modulate the activity of several ion channels, including gap junction channels. Here, we studied whether connexin46 (Cx46) hemichannels display such behavior. We studied the response of the Cx46 hemichannels expressed in Xenopus laevis oocytes to consecutive depolarization pulses. Hemichannels formed by wild-type Cx46 and a COOH-terminal domain truncation mutant (Cx46ΔCT) were activated by voltage pulses. When the hemichannels were depolarized repeatedly from −60 mV to +80 mV, the amplitude of the outward and tail currents increased progressively with successive pulses. This phenomenon (“current facilitation”) depended on the amplitude of the depolarization, reaching a maximum at approximately +60 mV in oocytes expressing Cx46, and on the interval between pulses, disappearing with intervals longer than about 20 s. The current facilitation was also present in oocytes expressing Cx46ΔCT, ruling out a primary role of this domain in the facilitation. Nominal removal of divalent cations from the extracellular side caused maximal current activation of Cx46 and Cx46ΔCT hemichannels and prevented facilitation. The results suggest that Cx46 hemichannels show a cooperative activation independent of their COOH-terminal domain
    corecore