148 research outputs found

    A Method of Friction Disturbance Compensation Based on Velocity Feedback

    Get PDF
    The friction disturbance influences servo system in follow-up performance directly, active compensation for the friction disturbance can improve the servo performance. The current compensation algorithms have some disadvantages, such as the complication of algorithms and the high requirement on hardware. In this paper, we propose a new method based on velocity observer. By this method, analytic solution of compensation voltage can be obtained aim to friction disturbance. The method is validated by comparing the results between simulation and experiment. This method has advantages of low requirement on hardware and simple algorithm. It is easy to be applied in practice and provides reference to other servo system for compensation of disturbance. DOI: http://dx.doi.org/10.11591/telkomnika.v11i7.281

    A Variational Bayesian Superresolution Approach Using Adaptive Image Prior Model

    Get PDF
    The objective of superresolution is to reconstruct a high-resolution image by using the information of a set of low-resolution images. Recently, the variational Bayesian superresolution approach has been widely used. However, these methods cannot preserve edges well while removing noises. For this reason, we propose a new image prior model and establish a Bayesian superresolution reconstruction algorithm. In the proposed prior model, the degree of interaction between pixels is adjusted adaptively by an adaptive norm, which is derived based on the local image features. Moreover, in this paper, a monotonically decreasing function is used to calculate and update the single parameter, which is used to control the severity of penalizing image gradients in the proposed prior model. Thus, the proposed prior model is adaptive to the local image features thoroughly. With the proposed prior model, the edge details are preserved and noises are reduced simultaneously. A variational Bayesian inference is employed in this paper, and the formulas for calculating all the variables including the HR image, motion parameters, and hyperparameters are derived. These variables are refined progressively in an iterative manner. Experimental results show that the proposed SR approach is very efficient when compared to existing approaches

    Protein functional module identification method combining topological features and gene expression data

    Get PDF
    Article conducting an intensive study on the problems of low recognition efficiency and noise in the overlapping structure of protein functional modules, based on topological characteristics of PPI network. Developing a protein function module recognition method ECTG based on Topological Features and Gene expression data for Protein Complex Identification. The experimental results show that the ECTG algorithm can detect protein functional modules better

    Multi-frame super resolution via deep plug-and-play CNN regularization

    Full text link
    Abstract Because of the ill-posedness of multi-frame super resolution (MSR), the regularization method plays an important role in the MSR field. Various regularization terms have been proposed to constrain the image to be estimated. However, artifacts also exist in the estimated image due to the artificial tendency in the manually designed prior model. To solve this problem, we propose a novel regularization-based MSR method with learned prior knowledge. By using the variable splitting technique, the fidelity term and regularization term are separated. The fidelity term is associated with an “ L 2 {L^{2}} - L 2 {L^{2}} ” form sub-problem. Meanwhile, the sub-problem respect to regularization term is a denoising problem, which can be solved by denoisers learned from a deep convolutional neural network. Different from the traditional regularization methods which employ hand-crafted image priors, in this paper the image prior model is replaced by learned prior implicitly. The two sub-problems are solved alternately and iteratively. The proposed method cannot only handle complex degradation model, but also use the learned prior knowledge to guide the reconstruction process to avoid the artifacts. Both the quantitative and qualitative results demonstrate that the proposed method gains better quality than the state-of-the-art methods.</jats:p

    A Generalized Detail-Preserving Super-Resolution method

    Full text link

    Salt and Pepper Noise Removal Method Based on a Detail-Aware Filter

    No full text
    The median-type filter is an effective technique to remove salt and pepper (SAP) noise; however, such a mechanism cannot always effectively remove noise and preserve details due to the local diversity singularity and local non-stationarity. In this paper, a two-step SAP removal method was proposed based on the analysis of the median-type filter errors. In the first step, a median-type filter was used to process the image corrupted by SAP noise. Then, in the second step, a novel-designed adaptive nonlocal bilateral filter is used to weaken the error of the median-type filter. By building histograms of median-type filter errors, we found that the error almost obeys Gaussian–Laplacian mixture distribution statistically. Following this, an improved bilateral filter was proposed to utilize the nonlocal feature and bilateral filter to weaken the median-type filter errors. In the proposed filter, (1) the nonlocal strategy is introduced to improve the bilateral filter, and the intensity similarity is measured between image patches instead pixels; (2) a novel norm based on half-quadratic estimation is used to measure the image patch- spatial proximity and intensity similarity, instead of fixed L1 and L2 norms; (3) besides, the scale parameters, which were used to control the behavior of the half-quadratic norm, were updated based on the local image feature. Experimental results showed that the proposed method performed better compared with the state-of-the-art methods.</jats:p
    corecore