66 research outputs found

    Extended Infrared Photoresponse in Te-Hyperdoped Si at Room Temperature

    Full text link
    Presently, silicon photonics requires photodetectors that are sensitive in a broad infrared range, can operate at room temperature, and are suitable for integration with the existing Si-technology process. Here, we demonstrate strong room-temperature sub-band-gap photoresponse of photodiodes based on Si hyperdoped with tellurium. The epitaxially recrystallized Te-hyperdoped Si layers are developed by ion implantation combined with pulsed-laser melting and incorporate Te-dopant concentrations several orders of magnitude above the solid solubility limit. With increasing Te concentration, the Te-hyperdoped layer changes from insulating to quasi-metallic behavior with a finite conductivity as the temperature tends to zero. The optical absorptance is found to increase monotonically with increasing Te concentration and extends well into the mid-infrared range. Temperature-dependent optoelectronic photoresponse unambiguously demonstrates that the extended infrared photoresponsivity from Te-hyperdoped Si p-n photodiodes is mediated by a Te intermediate band within the upper half of the Si band gap. This work contributes to pave the way toward establishing a Si-based broadband infrared photonic system operating at room temperature.Comment: 18 pages, 7 figure

    Identification of a Polycystin-1 Cleavage Product, P100, That Regulates Store Operated Ca2+ Entry through Interactions with STIM1

    Get PDF
    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder resulting in large kidney cysts and eventual kidney failure. Mutations in either the PKD1 or PKD2/TRPP2 genes and their respective protein products, polycystin-1 (PC1) and polycystin-2 (PC2) result in ADPKD. PC2 is known to function as a non-selective cation channel, but PC1's function and the function of PC1 cleavage products are not well understood. Here we identify an endogenous PC1 cleavage product, P100, a 100 kDa fragment found in both wild type and epitope tagged PKD1 knock-in mice. Expression of full length human PC1 (FL PC1) and the resulting P100 and C-Terminal Fragment (CTF) cleavage products in both MDCK and CHO cells significantly reduces the store operated Ca2+ entry (SOCE) resulting from thapsigargin induced store depletion. Exploration into the roles of P100 and CTF in SOCE inhibition reveal that P100, when expressed in Xenopus laevis oocytes, directly inhibits the SOCE currents but CTF does not, nor does P100 when containing the disease causing R4227X mutation. Interestingly, we also found that in PC1 expressing MDCK cells, translocation of the ER Ca2+ sensor protein STIM1 to the cell periphery was significantly altered. In addition, P100 Co-immunoprecipitates with STIM1 but CTF does not. The expression of P100 in CHO cells recapitulates the STIM1 translocation inhibition seen with FL PC1. These data describe a novel polycystin-1 cleavage product, P100, which functions to reduce SOCE via direct inhibition of STIM1 translocation; a function with consequences for ADPKD

    A Meta-Analysis of Caspase 9 Polymorphisms in Promoter and Exon Sequence on Cancer Susceptibility

    Get PDF
    BACKGROUND: Caspases are important regulators and executioners in apoptosis pathway and have been defined as either tumor suppressors or oncogenes. Polymorphisms in promoter and exon of caspase 9 were shown to confer genetic susceptibility to multiple cancers, but the results were inconsistent. To accomplish a more precise estimation of the relationship, a meta-analysis was performed. METHODOLOGY/PRINCIPAL FINDINGS: We assessed published studies of the association between caspase 9 polymorphisms and cancer risk from nine studies with 5,528 subjects for rs4645978, six studies with 2,403 subjects for rs105276 and two studies for rs4645981. Overall meta-analysis indicated that no evidence of an association between rs4645978 and cancers was found. Through the stratified analysis, statistically significant reduced cancer risks were observed among Caucasians (AG vs AA: OR = 0.81, 95% CI = 0.66-0.99, P(heterogeneity) = 0.150 and the dominant model: OR = 0.86, 95% CI = 0.75-0.99, P(heterogeneity) = 0.290) and prostate cancer. As for rs105276, Ex5+32G>A polymorphism was found with protective effect in overall meta-analysis (AA vs GG: OR = 0.75, 95% CI = 0.60-0.92, P(heterogeneity) = 0.887; A vs G: OR = 0.85, 95% CI = 0.77-0.95, P(heterogeneity) = 0.739 and the recessive model: OR = 0.68, 95% CI = 0.56-0.82, P(heterogeneity) = 0.309) and Asians group. While for rs4645981, a statistically significant increase in risk of lung cancer was shown in Asians (T vs C: OR = 1.23, 95% CI = 1.07-1.42, P(heterogeneity) = 0.399 and the dominant model: OR = 1.22, 95% CI = 1.04-1.43, P(heterogeneity) = 0.660). CONCLUSIONS/SIGNIFICANCE: Our meta-analysis suggests that the caspase 9 rs4645978 most likely contributes to decreased susceptibility to cancer in Caucasians and prostate cancer. The A allele of rs105276 might be a protective factor for cancer, especially for Asians. However, it seems that rs4645981 confers increased susceptibility to lung cancer in Asians

    Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Get PDF
    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [001] to in-plane [100] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam

    Discrete element modeling of the machining processes of brittle materials: recent development and future prospective

    Get PDF
    • 

    corecore