41 research outputs found

    Role of endogenous and exogenous antioxidants in risk of six cancers: evidence from the Mendelian randomization study

    Get PDF
    Background: Although oxidative stress is known to contribute to cancer, and endogenous and exogenous antioxidants are thought to prevent tumorigenesis by suppressing oxidative stress-induced DNA damage, antioxidants have also been reported to show negative effects on tumor formation, necessitating characterization of the causal associations between antioxidants and cancer risk.Methods: In this study, Mendelian randomization (MR) analysis, primarily inverse-variance weighted MR, was used to assess the causal effect of six endogenous and five exogenous diet-derived antioxidants on the risk of six cancers. MR-Egger intercept test and Cochran’s Q statistic were utilized to assess pleiotropy and heterogeneity, respectively.Results: For endogenous antioxidants, a bidirectional two-sample MR analysis was conducted. Our findings suggested that serum albumin has a negative causal association with the risk of prostate cancer [odds ratio (OR) = 0.78, 95% confidence interval (CI): 0.68–0.91, p = 0.001]. The risks of the six cancers showed no significant associations with endogenous antioxidants in the converse MR analysis. For exogenous antioxidants, the unidirectional two-sample MR analysis exhibited a nominal relationship between the serum retinol level and non-small-cell lung cancer risk (OR = 0.29, 95% CI: 0.11–0.76, p = 0.011).Conclusions: Thus, our study revealed the protective effects of genetic susceptibility to high circulating albumin levels on prostate cancer, providing potential targeted interventions for prostate cancer prevention

    Ferroptosis: a new mechanism of traditional Chinese medicine for cancer treatment

    Get PDF
    Ferroptosis, distinct from apoptosis, is a novel cellular death pathway characterized by the build-up of lipid peroxidation and reactive oxygen species (ROS) derived from lipids within cells. Recent studies demonstrated the efficacy of ferroptosis inducers in targeting malignant cells, thereby establishing a promising avenue for combating cancer. Traditional Chinese medicine (TCM) has a long history of use and is widely used in cancer treatment. TCM takes a holistic approach, viewing the patient as a system and utilizing herbal formulas to address complex diseases such as cancer. Recent TCM studies have elucidated the molecular mechanisms underlying ferroptosis induction during cancer treatment. These studies have identified numerous plant metabolites and derivatives that target multiple pathways and molecular targets. TCM can induce ferroptosis in tumor cells through various regulatory mechanisms, such as amino acid, iron, and lipid metabolism pathways, which may provide novel therapeutic strategies for apoptosis-resistant cancer treatment. TCM also influence anticancer immunotherapy via ferroptosis. This review comprehensively elucidates the molecular mechanisms underlying ferroptosis, highlights the pivotal regulatory genes involved in orchestrating this process, evaluates the advancements made in TCM research pertaining to ferroptosis, and provides theoretical insights into the induction of ferroptosis in tumors using botanical drugs

    Design of Embedded Network Voice Communication Terminal Based on STM32 and μCOSIII

    No full text
    Aiming at the application demand of voice communication between user terminals in the simulated training environment, a design and implementation method of embedded network voice communication terminal based on STM32 and μCOSIII is proposed. The hardware module of communication terminal is based on STM32 microcontroller, voice communication module, LCD display module and SD card storage module. The embedded real-time operating system μCOSIII is transplanted in order to enhance the real time and stability of the control system, and the user interface management system STemWin is used to manage LCD module. The signal exchange protocol of speech communication is designed, and the realization of the communication function software based on TCP/IP protocol is completed. In order to detect the voice communication function of communication terminal, a communication server software based on .NET Framework platform is designed, which is responsible for managing the communication terminal and forwarding the communication data. The experimental results show that the user interface of the communication terminal is good, the data transmission is stable and the communication function is reliable

    Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    No full text
    The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR) sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method

    A Review of Marine Gravity Field Recovery from Satellite Altimetry

    No full text
    Marine gravity field recovery relies heavily on satellite altimetry. Thanks to the evolution of altimetry missions and the improvements in altimeter data processing methods, the marine gravity field model has been prominently enhanced in accuracy and resolution. However, high-accuracy and high-resolution gravity field recovery from satellite altimeter data remains particularly challenging. We provide an overview of advances in satellite altimetry for marine gravity field recovery, focusing on the impact factors and available models of altimetric gravity field construction. Firstly, the evolution of altimetry missions and the contribution to gravity field recovery are reviewed, from the existing altimetry missions to the future altimetry missions. Secondly, because the methods of altimeter data processing are of great significance when obtaining high-quality sea surface height observations, these improved methods are summarized and analyzed, especially for coastal altimetry. In addition, the problems to be resolved in altimeter data processing are highlighted. Thirdly, the characteristics of gravity recovery methods are analyzed, including the inverse Stokes formula, the inverse Vening Meinesz formula, Laplace’s equation, and least squares collocation. Furthermore, the latest global marine gravity field models are introduced, including the use of altimeter data and processing methods. The performance of the available global gravity field model is also evaluated by shipboard gravity measurements. The root mean square of difference between the available global marine gravity model and shipboard gravity from the National Centers for Environmental Information is approximately 5.10 mGal in the low-middle latitude regions, which is better than the result in high-latitude regions. In coastal areas, the accuracy of models still needs to be further improved, particularly within 40 km from the coastline. Meanwhile, the SDUST2021GRA model derived from the Shandong University of Science and Technology team also exhibited an exciting performance. Finally, the future challenges for marine gravity field recovery from satellite altimetry are discussed

    A Review of Marine Gravity Field Recovery from Satellite Altimetry

    No full text
    Marine gravity field recovery relies heavily on satellite altimetry. Thanks to the evolution of altimetry missions and the improvements in altimeter data processing methods, the marine gravity field model has been prominently enhanced in accuracy and resolution. However, high-accuracy and high-resolution gravity field recovery from satellite altimeter data remains particularly challenging. We provide an overview of advances in satellite altimetry for marine gravity field recovery, focusing on the impact factors and available models of altimetric gravity field construction. Firstly, the evolution of altimetry missions and the contribution to gravity field recovery are reviewed, from the existing altimetry missions to the future altimetry missions. Secondly, because the methods of altimeter data processing are of great significance when obtaining high-quality sea surface height observations, these improved methods are summarized and analyzed, especially for coastal altimetry. In addition, the problems to be resolved in altimeter data processing are highlighted. Thirdly, the characteristics of gravity recovery methods are analyzed, including the inverse Stokes formula, the inverse Vening Meinesz formula, Laplace’s equation, and least squares collocation. Furthermore, the latest global marine gravity field models are introduced, including the use of altimeter data and processing methods. The performance of the available global gravity field model is also evaluated by shipboard gravity measurements. The root mean square of difference between the available global marine gravity model and shipboard gravity from the National Centers for Environmental Information is approximately 5.10 mGal in the low-middle latitude regions, which is better than the result in high-latitude regions. In coastal areas, the accuracy of models still needs to be further improved, particularly within 40 km from the coastline. Meanwhile, the SDUST2021GRA model derived from the Shandong University of Science and Technology team also exhibited an exciting performance. Finally, the future challenges for marine gravity field recovery from satellite altimetry are discussed
    corecore