5,198 research outputs found

    Target shape effects on monoenergetic GeV proton acceleration

    Full text link
    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and the light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose to use a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in the three dimensional particle-in-cell simulations when a laser pulse with the focus intensity of 1022W=cm2 is used. The energy conversion efficiency of laser pulse to accelerated proton beam is more than 23%. Synchrotron radiation and damping effects are also checked in the interaction.Comment: 11 pages, 9 figure

    Angular Reconstruction of a Lead Scintillating-Fiber Sandwiched Electromagnetic Calorimeter

    Full text link
    A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam data for the Alpha Magnetic Spectrometer-02 (AMS-02). The results show that this method can achieve an angular resolution of 7.36\pm 0.08 / \sqrt(E) \oplus 0.28 \pm 0.02 degree in the determination of the photons direction, which is much more precise than that obtained with the commonly-adopted Center of Gravity(COG) method (8.4 \pm 0.1 /sqrt(E) \oplus 0.8\pm0.3 degree). Furthermore, since it uses only the properties of electromagnetic showers, this new method could also be used for other type of fine grain sampling calorimeters.Comment: 6 pages, 8 figure

    Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas

    Get PDF
    The Faraday effect, caused by a magnetic-field-induced change in the optical properties, takes place in a vast variety of systems from a single atomic layer of graphenes to huge galaxies. Currently, it plays a pivot role in many applications such as the manipulation of light and the probing of magnetic fields and material's properties. Basically, this effect causes a polarization rotation of light during its propagation along the magnetic field in a medium. Here, we report an extreme case of the Faraday effect where a linearly polarized ultrashort laser pulse splits in time into two circularly polarized pulses of opposite handedness during its propagation in a highly magnetized plasma. This offers a new degree of freedom for manipulating ultrashort and ultrahigh power laser pulses. Together with technologies of ultra-strong magnetic fields, it may pave the way for novel optical devices, such as magnetized plasma polarizers. In addition, it may offer a powerful means to measure strong magnetic fields in laser-produced plasmas.Comment: 18 pages, 5 figure

    A Web-Services-Based P2P Computing-Power Sharing Architecture

    Get PDF
    As demands of data processing and computing power are increasing, existing information system architectures become insufficient. Some organizations try to figure out how to keep their systems work without purchasing new hardware and software. Therefore, a Webservices-based model which shares the resource over the network like a P2P network will be proposed to meet this requirement in this paper. In addition, this paper also discusses some problems about security, motivation, flexibility, compatibility and workflow management for the traditional P2P power sharing models. Our new computing architecture - Computing Power Services (CPS) - will aim to address these problems. For the shortcomings about flexibility, compatibility and workflow management, CPS utilizes Web Services and Business Process Execution Language (BPEL) to overcome them. Because CPS is assumed to run in a reliable network where peers trust each other, the concerns about security and motivation will be negated. In essence, CPS is a lightweight Web-Services-based P2P power sharing environment and suitable for executing computing works in batch in a reliable networ

    Evolution of negative superhumps, quasi-periodic oscillations and outbursts in the Z Cam-type dwarf nova AH Her

    Full text link
    AH Her is a Z Cam-type dwarf nova with an orbital period of ~ 0.258 d. Dwarf nova oscillations and long-period dwarf nova oscillations have been detected, but no quasi-periodic oscillations (QPOs) and negative superhumps (NSHs) have been found. We investigated the association between NSHs, QPOs, and outbursts of AH Her based on \textit{TESS} photometry. We find for the first time the NSHs with a period of 0.24497(1) d in AH Her, and trace the variation of the amplitude and period of NSHs with the outburst. The amplitude of the NSHs is most significant at quiescence, weakening as the outburst rises, becoming undetectable at the top, rebounding and weakening at the plateau, and strengthening again as the outburst declines. The variation of the accretion disk radius can explain the NSHs amplitude variation except for the plateau, so we suggest that the relationship between NSHs amplitude and outburst can be used as a window to study the accretion disk instability and the origin of NSHs. In addition, we find the periodic variations in the amplitude, maxima, and shape of the NSHs ranging from 2.33(2) d to 2.68(5) d, which may be related to the precession of the tilted disk. Finally, we find QPOs at the top of AH Her's long outburst with ~ 2800 s similar to HS 2325+8205, suggesting that the presence of QPOs at the top of Z Cam's long outburst may be a general phenomenonComment: 20 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Multi-chromatic narrow-energy-spread electron bunches from laser wakefield acceleration with dual-color lasers

    Get PDF
    A method based on laser wakefield acceleration with controlled ionization injection triggered by another frequency-tripled laser is proposed, which can produce electron bunches with low energy spread. As two color pulses co-propagate in the background plasma, the peak amplitude of the combined laser field is modulated in time and space during the laser propagation due to the plasma dispersion. Ionization injection occurs when the peak amplitude exceeds certain threshold. The threshold is exceeded for limited duration periodically at different propagation distances, leading to multiple ionization injections and separated electron bunches. The method is demonstrated through multi-dimensional particle-in-cell simulations. Such electron bunches may be used to generate multi-chromatic X-ray sources for a variety of applications.Comment: 5 pages, 5 figures; accepted by PR
    • …
    corecore