7,545 research outputs found

    Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse

    Full text link
    Using multi-dimensional particle-in-cell (PIC) simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 1022W/cm^2 intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, the center part of the target can be uniformly accelerated for a longer time compared to a usual flat target. Target deformation and undesirable plasma heating are effectively suppressed. The final energy spectrum of the accelerated ion beam is improved dramatically. Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the laser energy are observed in multi-dimensional simulations. Radiation damping effects are also checked in the simulations.Comment: 4 pages, 4 figure

    Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma

    Get PDF
    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by ωp2+ωc2/4+ωc/2\sqrt{\omega_p^2+{\omega_c^2}/{4}} + {\omega_c}/{2}, where ωp\omega_p is the plasma frequency and ωc\omega_c is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ωp2/ωc\omega_p^2/\omega_c. The B field provides a tunability in the radiation frequency, spectrum width, and field strength.Comment: 6 pages, 5 figure

    Non-canonical statistics of finite quantum system

    Full text link
    The canonical statistics describes the statistical properties of an open system by assuming its coupling with the heat bath infinitesimal in comparison with the total energy in thermodynamic limit. In this paper, we generally derive a non-canonical distribution for the open system with a finite coupling to the heat bath, which deforms the energy shell to effectively modify the conventional canonical way. The obtained non-canonical distribution reflects the back action of system on the bath, and thus depicts the statistical correlations through energy fluctuations

    Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    Get PDF
    We investigate how next-generation laser pulses at 10 PW −- 200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ\gamma-ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by the hole boring. This pair-dominated plasma can block the laser transport and trigger an avalanche-like QED cascade, efficiently transfering the laser energy to photons. This renders a 1-μm\rm\mu m-scalelength, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such pulse in solid-target experiments than expected by classical plasma physics. Our simulations show for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.Comment: 5 figure

    Leibniz 2-algebras and twisted Courant algebroids

    Full text link
    In this paper, we give the categorification of Leibniz algebras, which is equivalent to 2-term sh Leibniz algebras. They reveal the algebraic structure of omni-Lie 2-algebras introduced in \cite{omniLie2} as well as twisted Courant algebroids by closed 4-forms introduced in \cite{4form}. We also prove that Dirac structures of twisted Courant algebroids give rise to 2-term L∞L_\infty-algebras and geometric structures behind them are exactly HH-twisted Lie algebroids introduced in \cite{Grutzmann}.Comment: 22 pages, to appear in Comm. Algebr

    Study on the triphenyl tetrazolium chloride– dehydrogenase activity (TTC-DHA) method in determination of bioactivity for treating tomato paste wastewater

    Get PDF
    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively facilitate the biochemical reaction of tomato paste wastewater treatment upon analysis of the influences of various DHA and kinetic factors. The biological activity of the activated sludge by TTC-DHA was changed to become applicable to aeration and wastewater treatment operation and management.Key words: Tomato paste wastewater, TTC-DHA, bioactivity, active sludge

    The Scaling Behavior of Classical Wave Transport in Mesoscopic Media at the Localization Transition

    Full text link
    The propagation of classical wave in disordered media at the Anderson localization transition is studied. Our results show that the classical waves may follow a different scaling behavior from that for electrons. For electrons, the effect of weak localization due to interference of recurrent scattering paths is limited within a spherical volume because of electron-electron or electron-phonon scattering, while for classical waves, it is the sample geometry that determine the amount of recurrent scattering paths that contribute. It is found that the weak localization effect is weaker in both cubic and slab geometry than in spherical geometry. As a result, the averaged static diffusion constant D(L) scales like ln(L)/L in cubic or slab geometry and the corresponding transmission follows ~ln L/L^2. This is in contrast to the behavior of D(L)~1/L and ~1/L^2 obtained previously for electrons or spherical samples. For wave dynamics, we solve the Bethe-Salpeter equation in a disordered slab with the recurrent scattering incorporated in a self-consistent manner. All of the static and dynamic transport quantities studied are found to follow the scaling behavior of D(L). We have also considered position-dependent weak localization effects by using a plausible form of position-dependent diffusion constant D(z). The same scaling behavior is found, i.e., ~ln L/L^2.Comment: 11 pages, 12 figures. Submitted to Phys. Rev. B on 3 May 200

    Localized Modes in Open One-Dimensional Dissipative Random Systems

    Full text link
    We consider, both theoretically and experimentally, the excitation and detection of the localized quasi-modes (resonances) in an open dissipative 1D random system. We show that even though the amplitude of transmission drops dramatically so that it cannot be observed in the presence of small losses, resonances are still clearly exhibited in reflection. Surprisingly, small losses essentially improve conditions for the detection of resonances in reflection as compared with the lossless case. An algorithm is proposed and tested to retrieve sample parameters and resonances characteristics inside the random system exclusively from reflection measurements.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let
    • …
    corecore