36 research outputs found

    Deletion of the V2 vasopressin receptor gene in two Chinese patients with nephrogenic diabetes insipidus

    Get PDF
    BACKGROUND: Congenital nephrogenic diabetes insipidus (NDI) is a rare X-linked inherited disorder characterized by the excretion of large volumes of diluted urine and caused by mutations in arginine vasopressin receptor 2 (AVPR2) gene. To investigate the mutation of AVPR2 gene in a Chinese family with congenital NDI, we screened AVPR2 gene in two NDI patients and eight family members by PCR amplification and direct sequencing. RESULTS: Five specific fragments, covering entire coding sequence and their flanking intronic sequences of AVPR2 gene, were not observed in both patients, while those fragments were all detected in the control subjects. Several different fragments around the AVPR2 locus were amplified step by step. It was revealed that a genomic fragment of 5,995-bp, which contained the entire AVPR2 gene and the last exon (exon 22) of the C1 gene, was deleted and a 3-bp (GAG) was inserted. Examination of the other family members showed that the mothers and the grandmother were carriers for this deletion. CONCLUSION: Our findings suggest that the two patients in a Chinese family suffering from congenital NDI had a 5,995-bp deletion and 3-bp (GAG) insertion at Xq28. The deletion contained the entire AVPR2 gene and exon 22 of the C1 gene

    Untargeted LC–MS/MS-Based Metabolomic Profiling for the Edible and Medicinal Plant Salvia miltiorrhiza Under Different Levels of Cadmium Stress

    Get PDF
    Salvia miltiorrhiza, a medicinal and edible plant, has been extensively applied to treat cardiovascular diseases and chronic hepatitis. Cadmium (Cd) affects the quality of S. miltiorrhiza, posing serious threats to human health. To reveal the metabolic mechanisms of S. miltiorrhiza's resistance to Cd stress, metabolite changes in S. miltiorrhiza roots treated with 0 (CK), 25 (T1), 50 (T2) and 100 (T3) mg kg−1 Cd by liquid chromatography coupled to mass spectrometry (LC–MS/MS) were investigated. A total of 305 metabolites were identified, and most of them were amino acids, organic acids and fatty acids, which contributed to the discrimination of CK from the Cd-treated groups. Among them, S. miltiorrhiza mainly upregulated o-tyrosine, chorismate and eudesmic acid in resistance to 25 mg kg−1 Cd; DL-tryptophan, L-aspartic acid, L-proline and chorismite in resistance to 50 mg kg−1 Cd; and L-proline, L-serine, L-histidine, eudesmic acid, and rosmarinic acid in resistance to 100 mg kg−1 Cd. It mainly downregulated unsaturated fatty acids (e.g., oleic acid, linoleic acid) in resistance to 25, 50, and 100 mg kg−1 Cd and upregulated saturated fatty acids (especially stearic acid) in resistance to 100 mg kg−1 Cd. Biosynthesis of unsaturated fatty acids, isoquinoline alkaloid, betalain, aminoacyl-tRNA, and tyrosine metabolism were the significantly enriched metabolic pathways and the most important pathways involved in the Cd resistance of S. miltiorrhiza. These data elucidated the crucial metabolic mechanisms involved in S. miltiorrhiza Cd resistance and the crucial metabolites that could be used to improve resistance to Cd stress in medicinal plant breeding

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Deletion of the V2 vasopressin receptor gene in two Chinese patients with nephrogenic diabetes insipidus

    No full text
    Abstract Background Congenital nephrogenic diabetes insipidus (NDI) is a rare X-linked inherited disorder characterized by the excretion of large volumes of diluted urine and caused by mutations in arginine vasopressin receptor 2 (AVPR2) gene. To investigate the mutation of AVPR2 gene in a Chinese family with congenital NDI, we screened AVPR2 gene in two NDI patients and eight family members by PCR amplification and direct sequencing. Results Five specific fragments, covering entire coding sequence and their flanking intronic sequences of AVPR2 gene, were not observed in both patients, while those fragments were all detected in the control subjects. Several different fragments around the AVPR2 locus were amplified step by step. It was revealed that a genomic fragment of 5,995-bp, which contained the entire AVPR2 gene and the last exon (exon 22) of the C1 gene, was deleted and a 3-bp (GAG) was inserted. Examination of the other family members showed that the mothers and the grandmother were carriers for this deletion. Conclusion Our findings suggest that the two patients in a Chinese family suffering from congenital NDI had a 5,995-bp deletion and 3-bp (GAG) insertion at Xq28. The deletion contained the entire AVPR2 gene and exon 22 of the C1 gene.</p

    Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li-O-2 batteries

    No full text
    Two-dimensional (2D) ultrathin nanocrystals represent a family of emerging nanomaterials with many proposed applications; however, the interlayer re-stacking between sheets greatly decreases the performance during practical operation. This work demonstrates a facile strategy to solve this challenging problem by rational assembly of 2D nanocrystals into three-dimensional (3D) aerogels, which paves the way for harvesting excellent structural properties of both nanostructures and macrostructures. The resultant 3D MnO2 aerogel shows significantly increased discharge capacity in Li-air batteries in comparison to its powder-like counterpart (4581.4 vs. 3902.6 mA h g(-1)), which outperforms many MnO2 and other transition metal-based electrocatalysts. Meanwhile, the as-fabricated Li-air cell demonstrates good rate capability and cycle life. Further mechanism study reveals that the improved performance is associated with ultrathin MnO2 nanosheets which allow highly exposed catalytic centres, as well as its excellent aerogel structure with rich porosity and a 3D continuous network that maximizes the utilization of MnO2 species for catalytic reactions. This study may open up new opportunities for making full use of 2D nanocrystals for a number of energy storage/conversion techniques

    Pickering emulsions prepared using zein-sugarcane leaves polyphenol covalent crosslinking nanoparticles via ultrasonication: Capacities in storage stability, lipid oxidation, in vitro digestion and safety evaluation

    No full text
    This study firstly used sugarcane leaf polyphenols (SGLp) to modify zein to form covalent nanoparticles (SGLpZ) and used SGLpZ as an emulsifier to stabilize pickering emulsions (SZP) via ultrasonic method. The results showed that the addition of SGLp could alter the physicochemical properties of zein, including improving increasing the hydrophilicity of zein and the antioxidant properties of zein (three basic antioxidant activities test in vitro). SGLpZ could be able to form a dense film on the surface of the pickering emulsions which inhibited lipid oxidation as the concentration of SGLp increased at 4 ℃ for 20 days, thus stabilizing pickering emulsions (SZP). Further assessment of storage stability of pickering emulsions stabilized by SGLp was evaluated via measuring the free fatty acids (FFA) release in vitro gastrointestinal digestion. The results showed that the FFA release of SZP decreased from 20.61 ± 0.10% to 16.14 ± 0.69%. In addition, SGLp gave SZP a yellow color, which inspired that SZP could be used in the food industry to make yellow-colored functional foods. Finally, the safety of SZP initially assessed by in-vitro hemocompatibility and cytotoxicity (MTT) assays. In conclusion, our fingdings were beneficial for the further design and development of SGLp in food fields and enabled the development a new type in functional protein-plant polyphenols food pickering emulsions

    SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries

    Get PDF
    A facile and up-scalable wet-mechanochemical process is designed for fabricating ultra-fine SnO2 nanoparticles anchored on graphene networks for use as anode materials for sodium ion batteries. A hierarchical structure of the SnO2@graphene composite is obtained from the process. The resultant rechargeable SIBs achieved high rate capability and good cycling stability

    Self-Sacrificial Template Strategy Coupled with Smart <i>in Situ</i> Seeding for Highly Oriented Metal–Organic Framework Layers: From Films to Membranes

    No full text
    Self-Sacrificial Template Strategy Coupled with Smart <i>in Situ</i> Seeding for Highly Oriented Metal–Organic Framework Layers: From Films to Membrane
    corecore