1,097 research outputs found

    Insight of the thermal conductivity of ϵ−\epsilon-iron at Earth's core conditions from the newly developed direct ab initioab~initio methodology

    Full text link
    The electronic thermal conductivity of iron at Earth's core conditions is an extremely important physical property in geophysics field. However, the exact value of electronic thermal conductivity of iron under extreme pressure and temperature still remains poorly known both experimentally and theoretically. A few recent experimental studies measured the value of the electronic thermal conductivity directly and some theoretical works have predicted the electronic thermal conductivity of iron at Earth's core conditions based on the Kubo-Greenwood method. However, these results differ largely from each other. A very recent research has confirmed that for iron at Earth's core conditions the strength of electron-electron scattering could be comparable to that for electron-phonon scattering, meaning that the electron-electron scattering should also be considered when evaluating the electronic thermal conductivity in the Earth's core situations. Here, by utilizing a newly developed methodology based on direct non-equilibrium ab initioab~initio molecular dynamics simulation coupled with the concept of electrostatic potential oscillation, we predict the electronic thermal conductivity of iron in h.c.p phase. Our methodology inherently includes the electron-phonon and electron-electron interactions under extreme conditions. Our results are comparable to the previous theoretical and experimental studies. More importantly, our methodology provides a new physical picture to describe the heat transfer process in ϵ−\epsilon-iron at Earth's core conditions from the electrostatic potential oscillation point of view and offers a new approach to study thermal transport property of pure metals in planet's cores with different temperature and pressures.Comment: 7 pages, 5 figure

    Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles

    Full text link
    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for a fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K300\,\mathrm{K} is 30.15 Wm−1K−130.15\,\mathrm{Wm^{-1}K^{-1}} (zigzag) and 13.65 Wm−1K−113.65\,\mathrm{Wm^{-1}K^{-1}} (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relation with temperature when the temperature is higher than Debye temperature (ΘD=278.66 K\Theta_D = 278.66\,\mathrm{K}). In comparison to graphene, the minor contribution around 5%5\% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.Comment: 5 pages and 6 figures, Supplemental Material available as http://www.rsc.org/suppdata/cp/c4/c4cp04858j/c4cp04858j1.pd

    Methodology for determining the electronic thermal conductivity of metals via direct non-equilibrium ab initio molecular dynamics

    Get PDF
    Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity (κel\kappa_{el}) can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential (EP) of the ion cores. Based on this premise, we develop a new methodology for evaluating κel\kappa_{el} by combining the free electron model and non-equilibrium ab initio molecular dynamics (NEAIMD) simulations. We demonstrate that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation (EPO), which is induced by the thermal motion of ion cores. This method directly predicts the κel\kappa_{el} of pure metals with a high degree of accuracy.Comment: 7 pages, 3 figures, with Supplementary Information of 19 pages, 7 figures and 7 table

    Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds: A comparative study

    Full text link
    New classes two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport property is one of the fundamental physical parameters. In this paper, we systematically investigated the phonon transport properties of 2D orthorhombic group IV-VI compounds of GeSGeS, GeSeGeSe, SnSSnS and SnSeSnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite the similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ\kappa), etc. Especially, the κ\kappa along the zigzag and armchair directions of monolayer GeSGeS shows the strongest anisotropy while monolayer SnSSnS and SnSeSnSe shows an almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in detail. With limited size, the κ\kappa could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications in nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and aplications in emerging technologies.Comment: 14 pages, 8 figures, 2 table

    Intranasal immunization with a helper-dependent adenoviral vector expressing the codon-optimized fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in BALB/c mice

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract. Currently, there is no clinically approved vaccine against RSV infection. Recent studies have shown that helper-dependent adenoviral (HDAd) vectors may represent effective and safe vaccine vectors. However, viral challenge has not been investigated following mucosal vaccination with HDAd vector vaccines. METHODS: To explore the role played by HDAd as an intranasally administered RSV vaccine vector, we constructed a HDAd vector encoding the codon optimized fusion glycoprotein (Fsyn) of RSV, designated HDAd-Fsyn, and delivered intranasally HDAd-Fsyn to mice. RESULTS: RSV-specific humoral and cellular immune responses were generated in BALB/c mice, and serum IgG with neutralizing activity was significantly elevated after a homologous boost with intranasal (i.n.) application of HDAd-Fsyn. Humoral immune responses could be measured even 14 weeks after a single immunization. Immunization with i.n. HDAd-Fsyn led to effective protection against RSV infection on challenge. CONCLUSION: The results indicate that HDAd-Fsyn can induce powerful systemic immunity against subsequent i.n. RSV challenge in a mouse model and is a promising candidate vaccine against RSV infection

    Diaqua­bis(5-carb­oxy-2-methyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)manganese(II)

    Get PDF
    The title complex, [Mn(C6H5N2O4)2(H2O)2], was obtained by hydro­thermal synthesis. The MnII atom, which lies on an inversion centre, displays a slightly distorted octa­hedral geometry. In the crystal packing, complex mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds to form a three-dimensional supramolecular structure. The title complex is isostructural with the corresponding cadmium(II) complex [Nie, Wen, Wu, Liu & Liu (2007 ▶). Acta Cryst. E63, m753–m755]
    • …
    corecore