31,151 research outputs found

    Uniform W^{1,p} Estimates for Systems of Linear Elasticity in a Periodic Medium

    Get PDF
    Let Lϵ\mathcal{L}_\epsilon be a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients. We obtain the uniform W1,pW^{1,p} estimate in a Lipschitz domain for solutions to the Dirichlet problem, where (2n/(n+1))−δ<p<(2n/(n−1))+δ(2n/(n+1)) -\delta<p<(2n/(n-1))+\delta. The ranges of pp's are sharp for n=2n=2 or 3

    Adder Based Residue to Binary Number Converters for (2n - 1; 2n; 2n + 1)

    Get PDF
    Copyright © 2002 IEEEBased on an algorithm derived from the new Chinese remainder theorem I, we present three new residue-to-binary converters for the residue number system (2n-1, 2n, 2n+1) designed using 2n-bit or n-bit adders with improvements on speed, area, or dynamic range compared with various previous converters. The 2n-bit adder based converter is faster and requires about half the hardware required by previous methods. For n-bit adder-based implementations, one new converter is twice as fast as the previous method using a similar amount of hardware, whereas another new converter achieves improvement in either speed, area, or dynamic range compared with previous convertersYuke Wang, Xiaoyu Song, Mostapha Aboulhamid and Hong She

    Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    Get PDF
    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion on the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.Comment: An extended version accepted by New. J. Phys. with 15 pages and 3 figure
    • …
    corecore