5,738 research outputs found
Ferromagnetism in 2p Light Element-Doped II-oxide and III-nitride Semiconductors
II-oxide and III-nitride semiconductors doped by nonmagnetic 2p light
elements are investigated as potential dilute magnetic semiconductors (DMS).
Based on our first-principle calculations, nitrogen doped ZnO, carbon doped
ZnO, and carbon doped AlN are predicted to be ferromagnetic. The ferromagnetism
of such DMS materials can be attributed to a p-d exchange-like p-p coupling
interaction which is derived from the similar symmetry and wave function
between the impurity (p-like t_2) and valence (p) states. We also propose a
co-doping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance
the ferromagnetic coupling and to increase the solubility and activity
Carbon-doped ZnO: A New Class of Room Temperature Dilute Magnetic Semiconductor
We report magnetism in carbon doped ZnO. Our first-principles calculations
based on density functional theory predicted that carbon substitution for
oxygen in ZnO results in a magnetic moment of 1.78 per carbon. The
theoretical prediction was confirmed experimentally. C-doped ZnO films
deposited by pulsed laser deposition with various carbon concentrations showed
ferromagnetism with Curie temperatures higher than 400 K, and the measured
magnetic moment based on the content of carbide in the films (
per carbon) is in agreement with the theoretical prediction. The magnetism is
due to bonding coupling between Zn ions and doped C atoms. Results of
magneto-resistance and abnormal Hall effect show that the doped films are
-type semiconductors with intrinsic ferromagnetism. The carbon doped ZnO
could be a promising room temperature dilute magnetic semiconductor (DMS) and
our work demonstrates possiblity of produing DMS with non-metal doping.Comment: REVtex source with 4 figures in eps forma
Nernst Effect and Superconducting Fluctuations in Zn-doped YBaCuO
We report the measurements of in-plane resistivity, Hall effect, and Nernst
effect in Zn doped YBaCuO epitaxial thin films grown
by pulsed laser deposition technique. The pseudogap temperature, ,
determined from the temperature dependence of resistivity, does not change
significantly with Zn doping. Meanwhile the onset temperature () of
anomalous Nernst signal above , which is interpreted as evidence for
vortex-like excitations, decreases sharply as the superconducting transition
temperature does. A significant decrease in the maximum of vortex
Nernst signal in mixed state is also observed, which is consistent with the
scenario that Zn impurities cause a decrease in the superfluid density and
therefore suppress the superconductivity. The phase diagram of ,
, and versus Zn content is presented and discussed.Comment: 6 pages, 5 figures, Latex; v2: to be published in PR
Advances on research epigenetic change of hybrid and polyploidy in plants
Hybridization between different species, and subsequently polyploidy, play an important role in plant genome evolution, as well as it is a widely used approach for crop improvement. Recent studies of the last several years have demonstrated that, hybridization and subsequent genome doubling (polyploidy) often induce an array of variations that could not be explained by the conventional genetic paradigms. A large proportion of these variations are epigenetic in nature. Epigenetic can be defined as a change of the study in the regulation of gene activity and expression that are not driven by gene sequence information. However, the ramifications of epigenetic in plant biology are immense, yet unappreciated. In contrast to the ease with which the DNA sequence can be studied, studying the complex patterns inherent in epigenetic poses many problems. In this view, advances on researching epigenetic change of hybrid and polyploidy in plants will be initially set out by summarizing the latest researches and the basic studies on epigenetic variations generated by hybridization. Moreover, polyploidy may shed light on the mechanisms generating these variations. These advances will enhance our understanding on their evolutionary significances, as well as enable us to utilize these variations more effectively than before in crop breeding.Key words: Epigenetic change, hybridization and polyploidy, evolution, crop breeding
Robust Transcoding Sensory Information With Neural Spikes
Neural coding, including encoding and decoding, is one of the key problems in neuroscience for understanding how the brain uses neural signals to relate sensory perception and motor behaviors with neural systems. However, most of the existed studies only aim at dealing with the continuous signal of neural systems, while lacking a unique feature of biological neurons, termed spike, which is the fundamental information unit for neural computation as well as a building block for brain-machine interface. Aiming at these limitations, we propose a transcoding framework to encode multi-modal sensory information into neural spikes and then reconstruct stimuli from spikes. Sensory information can be compressed into 10% in terms of neural spikes, yet re-extract 100% of information by reconstruction. Our framework can not only feasibly and accurately reconstruct dynamical visual and auditory scenes, but also rebuild the stimulus patterns from functional magnetic resonance imaging (fMRI) brain activities. More importantly, it has a superb ability of noise immunity for various types of artificial noises and background signals. The proposed framework provides efficient ways to perform multimodal feature representation and reconstruction in a high-throughput fashion, with potential usage for efficient neuromorphic computing in a noisy environment
Landau Transport equations in slave-boson mean-field theory of t-J model
In this paper we generalize slave-boson mean-field theory for model to
the time-dependent regime, and derive transport equations for model, both
in the normal and superconducting states. By eliminating the boson and
constraint fields exactly in the equations of motion we obtain a set of
transport equations for fermions which have the same form as Landau transport
equations for normal Fermi liquid and Fermi liquid superconductor, respectively
with all Landau parameters explicity given. Our theory can be viewed as a
refined version of U(1) Gauge theory where all lattice effects are retained and
strong correlation effects are reflected as strong Fermi-liquid interactions in
the transport equation. Some experimental consequences are discussed.Comment: 19 page
Isospin influences on particle emission and critical phenomenon in nuclear dissociation
Features of particle emission and critical point behavior are investigated as
functions of the isospin of disassembling sources and temperature at a moderate
freeze-out density for medium-size Xe isotopes in the framework of isospin
dependent lattice gas model. Multiplicities of emitted light particles,
isotopic and isobaric ratios of light particles show the strong dependence on
the isospin of the dissociation source, but double ratios of light isotope
pairs and the critical temperature determined by the extreme values of some
critical observables are insensitive to the isospin of the systems. Values of
the power law parameter of cluster mass distribution, mean multiplicity of
intermediate mass fragments (), information entropy () and Campi's
second moment () also show a minor dependence on the isospin of Xe
isotopes at the critical point. In addition, the slopes of the average
multiplicites of the neutrons (), protons (), charged particles
(), and IMFs (), slopes of the largest fragment mass number
(), and the excitation energy per nucleon of the disassembling source
() to temperature are investigated as well as variances of the
distributions of , , , , and . It
is found that they can be taken as additional judgements to the critical
phenomena.Comment: 9 Pages, 8 figure
- …