21,296 research outputs found

    A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans.

    Get PDF
    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors

    MicroRNA-155 expression is independently predictive of outcome in chordoma.

    Get PDF
    BackgroundChordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma.MethodsThe miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively.ResultsThe miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells.ConclusionsWe have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma

    Photoluminescence and spectral switching of single CdSe/ZnS colloidal nanocrystals in poly(methyl methacrylate)

    Full text link
    Emission from single CdSe nanocrystals in PMMA was investigated. A fraction of the nanocrystals exhibiting switching between two energy states, which have similar total intensities, but distinctly different spectra were observed. We found that the spectral shift characteristic frequency increases with the pump power. By using the dynamic shift in the spectral position of emission peaks, we were able to correlate peaks from the same nanocrystal. The measured correlation is consistent with assignment of low energy lines to phonon replicas.Comment: 5 pages, 4 figure

    Nanodelivery of a functional membrane receptor to manipulate cellular phenotype.

    Get PDF
    Modification of membrane receptor makeup is one of the most efficient ways to control input-output signals but is usually achieved by expressing DNA or RNA-encoded proteins or by using other genome-editing methods, which can be technically challenging and produce unwanted side effects. Here we develop and validate a nanodelivery approach to transfer in vitro synthesized, functional membrane receptors into the plasma membrane of living cells. Using β2-adrenergic receptor (β2AR), a prototypical G-protein coupled receptor, as an example, we demonstrated efficient incorporation of a full-length β2AR into a variety of mammalian cells, which imparts pharmacologic control over cellular signaling and affects cellular phenotype in an ex-vivo wound-healing model. Our approach for nanodelivery of functional membrane receptors expands the current toolkit for DNA and RNA-free manipulation of cellular function. We expect this approach to be readily applicable to the synthesis and nanodelivery of other types of GPCRs and membrane receptors, opening new doors for therapeutic development at the intersection between synthetic biology and nanomedicine

    High arsenic (As) concentrations in the shallow groundwaters of southern Louisiana: Evidence of microbial controls on As mobilization from sediments

    Get PDF
    Citation: Yang, N., Shen, Z., Datta, S., & Johannesson, K. H. (2016). High arsenic (As) concentrations in the shallow groundwaters of southern Louisiana: Evidence of microbial controls on As mobilization from sediments. Journal of Hydrology: Regional Studies, 5, 100-113. doi:10.1016/j.ejrh.2015.11.023Study region: The Mississippi Delta in southern Louisiana, United States. Study focus: The probable role that microbial respiration plays in As release from the shallow aquifer sediments. New hydrological insights for the region: Shallow groundwaters in southern Louisiana have been reported to contain elevated As concentrations, whereas mechanisms responsible for As release from sediments have rarely been studied in this region. Microbial respiration is generally considered the main mechanism controlling As release in reducing anoxic aquifers such as the shallow aquifers in southern Louisiana and those of the Bengal basin. This study investigates the role microbial respiration plays in As release from shallow aquifer sediments in southern Louisiana through sediment incubation experiments and porewater analysis. Arsenic concentrations were the lowest in the sterilized control experiments, slightly higher in the un-amended experiments, and the highest in the experiments amended with acetate, and especially those amended with both acetate and AQDS (9,10-anthraquinone-2,6-disulfonic acid). Although Fe and Mn generally decreased at the beginning of all the experiments, they did follow a similar trend to As after the decrease. Porewater analysis showed that As and Fe concentrations were generally positively correlated and were higher in the coarse-grained sediments than in the fine-grained sediments. Results of the investigation are consistent with microbial respiration playing a key role in As release from the shallow aquifers sediments in southern Louisiana. © 2015 The Authors

    H-Dihyperon in Quark Cluster Model

    Full text link
    The H dihyperon (DH) is studied in the framework of the SU(3) chiral quark model. It is shown that except the σ\sigma chiral field, the overall effect of the other SU(3) chiral fields is destructive in forming a stable DH. The resultant mass of DH in a three coupled channel calculation is ranged from 2225 MeVMeV to 2234 MeVMeV.Comment: 9 pages, emte

    Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell.

    Get PDF
    G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in a broad range of physiological responses and disease states. Activated GPCRs can undergo agonist-induced phosphorylation by G protein receptor kinases (GRKs) and second messenger-dependent protein kinases such as protein kinase A (PKA). Here, we characterize spatially segregated subpopulations of β2-adrenergic receptor (β2AR) undergoing selective phosphorylation by GRKs or PKA in a single cell. GRKs primarily label monomeric β2ARs that undergo endocytosis, whereas PKA modifies dimeric β2ARs that remain at the cell surface. In hippocampal neurons, PKA-phosphorylated β2ARs are enriched in dendrites, whereas GRK-phosphorylated β2ARs accumulate in soma, being excluded from dendrites in a neuron maturation-dependent manner. Moreover, we show that PKA-phosphorylated β2ARs are necessary to augment the activity of L-type calcium channel. Collectively, these findings provide evidence that functionally distinct subpopulations of this prototypical GPCR exist in a single cell

    An Improved Earthquake Catalog During the 2018 Kı̄lauea Eruption From Combined Onshore and Offshore Seismic Arrays

    Get PDF
    The Island of Hawai’i was formed by repeated eruptions of basalts at an oceanic hotspot. Kı̄lauea, the youngest among the subaerial volcanoes of the island, erupted intensely in 2018. The eruption provided an opportunity to look into the mechanisms that operate at the volcano and associated earthquake activities, as it was recorded simultaneously, for the first time, by onshore and offshore seismometers. We used most of the publicly available seismic data during the eruption period, including temporary arrays, to build a more complete earthquake catalog during the eruption than that provided by the Hawaiian Volcano Observatory. We used a short-time-average/long-time-average method to identify potential earthquakes. The detections were associated with events and automatically picked with P-wave and S-wave arrivals, which were used to locate the events in a three-dimensional velocity model. After re-examining these earthquake events, their coda/duration magnitudes were determined. The resulting half-year catalog contains 375,736 events with one of the highest daily earthquake numbers ever reported (6,128 on 21 June 2018). A great number of events were recorded during the caldera collapses, from its beginning until its rapid ending. The catalog also contains abundant events near the Pu’u‘ō‘ō vent and in the lower East Rift Zone, where an increase of seismicity in mid-July and August indicated a step-up in magma intrusion after the eruption

    Local Modularity, a measure that characterises street neighbourhood connectivity

    Get PDF
    Recent research in space syntax has shown the use of community detection methods on the street network dual graph can identify isolated local areas. Leveraging on this characteristic, we propose a new measure called local modularity that tries to capture street neighbourhood connectedness. We examine the measure visually for a number of cities where we found the measure can identify more neighbourhood connectivity. We also then validated the measure by running a network stability experiment where we simulate a network under different forms of attacks; a random attack scenario versus a targeted attack scenario. We found more stable behaviour when removing streets that have higher neighbourhood connectivity than attacking the same network randomly. These results have implications on the spatial design and planning of neighbourhoods and in measuring community severances

    Possible Dibaryons with Strangeness s=-5

    Get PDF
    In the framework of RGMRGM, the binding energy of the six quark system with strangeness s=-5 is systematically investigated under the SU(3) chiral constituent quark model. The single ΞΩ\Xi^*\Omega channel calculation with spins S=0 and 3 and the coupled ΞΩ\Xi\Omega and ΞΩ\Xi^*\Omega channel calculation with spins S=1 and 2 are considered, respectively. The results show following observations: In the spin=0 case, ΞΩ\Xi^* \Omega is a bound dibaryon with the binding energy being 80.092.4MeV80.0 \sim 92.4 MeV. In the S=1 case, ΞΩ\Xi\Omega is also a bound dibaryon. Its binding energy is ranged from 26.2MeV26.2 MeV to 32.9MeV32.9 MeV. In the S=2 and S=3 cases, no evidence of bound dibaryons are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are also given.Comment: 10 pages, late
    corecore