132 research outputs found

    Edge chirality determination of graphene by Raman spectroscopy

    Full text link
    Raman imaging on the edges of single layer micromechanical cleavage graphene (MCG) was carried out. The intensity of disorder-induced Raman feature (D band at ~1350 cm-1) was found to be correlated to the edge chirality: it is stronger at the armchair edge and weaker at the zigzag edge. This shows that Raman spectroscopy is a reliable and practical method to identify the chirality of graphene edge and to help in determination of the crystal orientation. The determination of graphene chirality is critically important for fundamental study as well as for applications.Comment: 14 pages, 3 figures, 1 tabl

    Interaction between graphene and SiO2 surface

    Full text link
    With first-principles DFT calculations, the interaction between graphene and SiO2 surface has been analyzed by constructing the different configurations based on {\alpha}-quartz and cristobalite structures. The single layer graphene can stay stably on SiO2 surface is explained based on the general consideration of configuration structures of SiO2 surface. It is also found that the oxygen defect in SiO2 surface can shift the Fermi level of graphene down which opens out the mechanism of hole-doping effect of graphene absorbed on SiO2 surface observed in experiments.Comment: 17 pages, 7 figure

    Stacking Dependent Optical Conductivity of Bilayer Graphene

    Get PDF
    The optical conductivities of graphene layers are strongly dependent on their stacking orders. Our first-principle calculations show that while the optical conductivities of single layer graphene (SLG) and bilayer graphene (BLG) with Bernal stacking are almost frequency independent in the visible region, the optical conductivity of twisted bilayer graphene (TBG) is frequency dependent, giving rise to additional absorption features due to the band folding effect. Experimentally, we obtain from contrast spectra the optical conductivity profiles of BLG with different stacking geometries. Some TBG samples show additional features in their conductivity spectra in full agreement with our calculation results, while a few samples give universal conductivity values similar to that of SLG. We propose those variations of optical conductivity spectra of TBG samples originate from the difference between the commensurate and incommensurate stackings. Our results reveal that the optical conductivity measurements of graphene layers indeed provide an efficient way to select graphene films with desirable electronic and optical properties, which would great help the future application of those large scale misoriented graphene films in photonic devices.Comment: 20 pages, 5 figures, accepted by ACS Nan

    G band Raman double resonance in twisted bilayer graphene: an evidence of band splitting and folding

    Full text link
    The stacking faults (deviates from Bernal) will break the translational symmetry of multilayer graphenes and modify their electronic and optical behaviors to the extent depending on the interlayer coupling strength. This paper addresses the stacking-induced band splitting and folding effect on the electronic band structure of twisted bilayer graphene. Based on the first-principles density functional theory study, we predict that the band folding effect of graphene layers may enable the G band Raman double resonance in the visible excitation range. Such prediction is confirmed experimentally with our Raman observation that the resonant energies of the resonant G mode are strongly dependent on the stacking geometry of graphene layers.Comment: 16 pages, 4 figures, Accepted by Phys. Rev.

    Stacking-Dependent Optical Conductivity of Bilayer Graphene

    Get PDF
    The optical conductivities of graphene layers are strongly dependent on their stacking orders. Our first-principle calculations show that, while the optical conductivities of single-layer graphene (SLG) and bilayer graphene (BLG) with Bernal stacking are almost frequency-independent in the visible region, the optical conductivity of twisted bilayer graphene (TBG) is frequency-dependent, giving rise to additional absorption features due to the band folding effect. Experimentally, we obtain from contrast spectra the optical conductivity profiles of BLG with different stacking geometries. Some TBG samples show additional features in their conductivity spectra, in full agreement with our calculation results, while a few samples give universal conductivity values similar to that of SLG. We propose that those variations of optical conductivity spectra of TBG samples originate from the difference between the commensurate and incommensurate stackings. Our results reveal that the optical conductivity measurements of graphene layers indeed provide an efficient way to select graphene films with desirable electronic and optical properties, which would greatly help the future application of those large-scale misoriented graphene films in photonic devices
    corecore