113 research outputs found
Batch Active Learning from the Perspective of Sparse Approximation
Active learning enables efficient model training by leveraging interactions
between machine learning agents and human annotators. We study and propose a
novel framework that formulates batch active learning from the sparse
approximation's perspective. Our active learning method aims to find an
informative subset from the unlabeled data pool such that the corresponding
training loss function approximates its full data pool counterpart. We realize
the framework as sparsity-constrained discontinuous optimization problems,
which explicitly balance uncertainty and representation for large-scale
applications and could be solved by greedy or proximal iterative hard
thresholding algorithms. The proposed method can adapt to various settings,
including both Bayesian and non-Bayesian neural networks. Numerical experiments
show that our work achieves competitive performance across different settings
with lower computational complexity.Comment: NeurIPS 2022 Workshop on Human in the Loop Learnin
A unified 4/8/16/32-point integer IDCT architecture for multiple video coding standards
(4096x2048) 30fps video sequence at 191MHz working frequency, with 93K gate count and 18944-bit SRAM. We suggest a normalized criterion called design efficiency to compare with previous works. It shows that this design is 31% more efficient than previous work
Post-Layout Simulation Driven Analog Circuit Sizing
Post-layout simulation provides accurate guidance for analog circuit design,
but post-layout performance is hard to be directly optimized at early design
stages. Prior work on analog circuit sizing often utilizes pre-layout
simulation results as the optimization objective. In this work, we propose a
post-layout-simulation-driven (post-simulation-driven for short) analog circuit
sizing framework that directly optimizes the post-layout simulation
performance. The framework integrates automated layout generation into the
optimization loop of transistor sizing and leverages a coupled Bayesian
optimization algorithm to search for the best post-simulation performance.
Experimental results demonstrate that our framework can achieve over 20% better
post-layout performance in competitive time than manual design and the method
that only considers pre-layout optimization
Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance
The linear positive magnetoresistance (LPMR) is a widely observed phenomenon
in topological materials, which is promising for potential applications on
topological spintronics. However, its mechanism remains ambiguous yet and the
effect is thus uncontrollable. Here, we report a quantitative scaling model
that correlates the LPMR with the Berry curvature, based on a ferromagnetic
Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 Kelvin and 9
Tesla, among known magnetic topological semimetals. In this system, masses of
Weyl nodes existing near the Fermi level, revealed by theoretical calculations,
serve as Berry-curvature monopoles and low-effective-mass carriers. Based on
the Weyl picture, we propose a relation , with B being the applied magnetic field and the average Berry curvature near the Fermi surface, and further
introduce temperature factor to both MR/B slope (MR per unit field) and
anomalous Hall conductivity, which establishes the connection between the model
and experimental measurements. A clear picture of the linearly slowing down of
carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the
k-space Berry curvature and real-space magnetic field. Our study not only
provides an experimental evidence of Berry curvature induced LPMR for the first
time, but also promotes the common understanding and functional designing of
the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic
sensing or information storage
Hypoxia-inducible factor-1α promotes macrophage functional activities in protecting hypoxia-tolerant large yellow croaker (Larimichthys crocea) against Aeromonas hydrophila infection
The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1β, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1β were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection
Dual Activities of ACC Synthase: Novel Clues Regarding the Molecular Evolution of Acs Genes
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes
Radial probe endobronchial ultrasound assisted conventional transbronchial needle aspiration in the diagnosis of solitary peribronchial pulmonary lesion located in the segmental bronchi
Background: The diagnosis of peribronchial pulmonary lesions located in the tertiary bronchi, also known as segmental bronchi, as well as, the 4th order and 5th order segmental bronchi is very difficult. Histopathological specimens cannot be easily obtained by endobronchial biopsies (EBBX) due to the patent but small segmental bronchial lumen. The aim of the present study was to evaluate the diagnostic accuracy and safety of the novel technique with radial probe endobronchial ultrasound (R-EBUS) assisted conventional transbronchial needle aspiration (C-TBNA) in the diagnosis of solitary peribronchial pulmonary lesions located in segmental bronchi from 3th to 5th order. Methods: From December 2014 to December 2015, 16 patients with solitary peribronchial pulmonary lesions in the segmental bronchi from 3th to 5th order confirmed by computed tomography (CT) were enrolled. The lesions were located using radial probe endobronchial ultrasound (R-EBUS) to determine the sites of conventional transbronchial needle aspiration (C-TBNA), then, histopathological specimens were obtained using the technique of C-TBNA. The final pathological diagnosis was made based on the findings from the surgical specimens. Statistical analyses were performed for specimen results and complications. Results: On pathological evaluation, 14 of the 16 specimens were malignant, including 8 adenocarcinomas, 4 squamous cell carcinomas, and 2 small cell carcinomas, while 2 were non-malignant diseases. The diagnostic accuracy rate, sensitivity and missed diagnosis rates were 87.5%, 87.5% and 12.5%, respectively. When Combined the results of cytology with histologic samples obtained from C-TBNA the total diagnostic accuracy rate, sensitivity and missed diagnosis rate were 93.75%, 93.75% and 6.25%, respectively. There were 2 cases of bleeding complications \u3e5 mL after C-TBNA, and both were resolved with endobronchial management. Conclusions: The combination of R-EBUS with C-TBNA was advantageous and safe for the diagnosis of solitary peribronchial pulmonary lesions located in the segmental bronchi. However, possible bleeding complications should be anticipated with needle aspiration. Further verification of this combined application should be investigated in larger clinical trials
- …