4,123 research outputs found

    Bst-inspired Smart Flexible Electronics

    Get PDF
    The advances in modern communication systems have brought about devices with more functionality, better performance, smaller size, lighter weight and lower cost. Meanwhile, the requirement for newer devices has become more demanding than ever. Tunability and flexibility are both long-desired features. Tunable devices are ‘smart’ in the sense that they can adapt to the dynamic environment or varying user demand as well as correct the minor deviations due to manufacturing fluctuations, therefore making it possible to reduce system complexity and overall cost. It is also desired that electronics be flexible to provide conformability and portability. Previously, tunable devices on flexible substrates have been realized mainly by dicing and assembling. This approach is straightforward and easy to carry out. However, it will become a “mission impossible” when it comes to assembling a large amount of rigid devices on a flexible substrate. Moreover, the operating frequency is often limited by the parasitic effect of the interconnection between the diced device and the rest of the circuit on the flexible substrate. A recent effort utilized a strain-sharing Si/SiGe/Si nanomembrane to transfer a device onto a flexible substrate. This approach works very well for silicon based devices with small dimensions, such as transistors and varactor diodes. Large-scale fabrication capability is still under investigation. A new transfer technique is proposed and studied in this research. Tunable BST (Barium Strontium Titanate) IDCs (inter-digital capacitors) are first fabricated on a silicon substrate. The devices are then transferred onto a flexible LCP (liquid crystalline polymer) substrate using iv wafer bonding of the silicon substrate to the LCP substrate, followed by silicon etching. This approach allows for monolithic fabrication so that the transferred devices can operate in millimeter wave frequency. The tunability, capacitance, Q factor and equivalent circuit are studied. The simulated and measured performances are compared. BST capacitors on LCP substrates are also compared with those on sapphire substrates to prove that this transfer process does not impair the performance. A primary study of a reflectarray antenna unit cell is also conducted for loss and phase swing performance. The BST thin film layout and bias line positions are studied in order to reduce the total loss. Transferring a full-size BST-based reflectarray antenna onto an LCP substrate is the ultimate goal, and this work is ongoing at the University of Central Florida (UCF). HFSS is used to simulate the devices and to prove the concept. All of the devices are fabricated in the clean room at UCF. Probe station measurements and waveguide measurements are performed on the capacitors and reflectarray antenna unit cells respectively. This work is the first comprehensive demonstration of this novel transfer technique

    A Modeling Study on the Influence of Sea-Level Rise and Channel Deepening on Estuarine Circulation and Dissolved Oxygen Levels in the Tidal James River, Virginia, USA

    Get PDF
    The impact of channel deepening and sea-level rise on the environmental integrity of an estuary is investigated using a three-dimensional hydrodynamic-eutrophication model. The model results show that dissolved oxygen (DO) only experienced minor changes, even when the deep channel was deepened by 3 m in the mesohaline and polyhaline regions of the James River. We found that vertical stratification decreased DO aeration while the estuarine gravitational circulation increased bottom DO exchange. The interactions between these two processes play an important role in modulating DO. The minor change in DO due to channel deepening indicates that the James River is unique as compared with other estuaries. To understand the impact of the hydrodynamic changes on DO, both vertical and horizontal transport timescales represented by water age were used to quantify the changes in hydrodynamic conditions and DO variation, in addition to traditional measures of stratification and circulation. The model results showed that channel deepening led to an increase in both gravitational circulation strength and vertical stratification. Saltwater age decreased and vertical exchange time increased with increases in channel depth. However, these two physical processes can compensate each other, resulting in minor changes in DO. A comparison of the impact of a sea-level rise of 1.0 m with channel deepening scenarios was conducted. As the sea level rises, the vertical transport time decreases slightly while the strength of gravitational circulation weakens due to an increase in mean water depth. Consequently, DO in the estuary experiences a moderate decrease

    Residue cross sections of 50^{50}Ti-induced fusion reactions based on the two-step model

    Full text link
    50^{50}Ti-induced fusion reactions to synthesize superheavy elements are studied systematically with the two-step model developed recently, where fusion process is divided into approaching phase and formation phase. Furthermore, the residue cross sections for different neutron evaporation channels are evaluated with the statistical evaporation model. In general, the calculated cross sections are much smaller than that of 48^{48}Ca-induced fusion reactions, but the results are within the detection capability of experimental facilities nowadays. The maximum calculated residue cross section for producing superheavy element Z=119Z=119 is in the reaction 50^{50}Ti+247^{247}Bk in 3n3n channels with σres(3n)=0.043\sigma_{\rm res}(3n)=0.043 pb at EE^{*} = 37.0 MeV.Comment: 6 pages, 7 figure

    Maximizing Friend-Making Likelihood for Social Activity Organization

    Full text link
    The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, in-person interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and per- form extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm

    Development of the Hydrodynamic Model for Long-Term Simulation of Water Quality Processes of the Tidal James River, Virginia

    Get PDF
    Harmful algal blooms (HABs) have frequently occurred in the James River. The State has convened a Scientific Advisory Panel (SAP) to review the James River chlorophyll-a standards. The SAP will conduct a scientific study to review the basis for setting the chlorophyll-a standards. To support the SAP study of chlorophyll-a standards, the State of Virginia has decided to develop a numerical modeling system that is capable of simulating phytoplankton and HABs. The modeling system includes a watershed model, a three-dimensional hydrodynamic model and water quality models. The focus of this study will be on the development and verification of the hydrodynamic model. In order to simulate the complex geometry of the James River, a high-resolution model has been implemented. The model has been calibrated for a long-term period of 23 years. A series of model experiments was conducted to evaluate the impact of forcings on dynamic simulation and transport time. It was found that freshwater discharge is the most sensitive for an accurate simulation of salinity and transport time. The water age predicted by the model in the tidal freshwater region represents the fluctuation of transport processes, and it has a good correlation with the algal bloom, while at the downstream, the transport time simulation agrees with the delay of the HAB in the mesohaline of the James after the HAB occurred in the Elizabeth River due to the transport processes. The results indicate that the hydrodynamic model is capable of simulating the dynamic processes of the James and driving water quality models in the James River
    corecore