29 research outputs found

    Constitutive activation of JAK–STAT3 signaling by BRCA1 in human prostate cancer cells

    Get PDF
    AbstractGerm-line mutations of the breast cancer susceptibility gene 1 (BRCA1) confer a high risk for breast and ovarian cancer in women and prostate cancer in men. The BRCA1 protein contributes to cell proliferation, cell cycle regulation, DNA repair and apoptosis; however, the mechanisms underlying these functions of BRCA1 remain largely unknown. Here, we showed that, in Du-145 human prostate cancer cells, enhanced expression of BRCA1 resulted in constitutive activation of signal transducer and activator transcription factor 3 (STAT3) tyrosine and serine phosphorylation. Moreover, Janus kinase 1 (JAK1) and JAK2, the upstream activators of STAT3, were also activated by BRCA1. Immunoprecipitation assay showed that BRCA1 interacted with JAK1 and JAK2. Blocking STAT3 activation using antisense oligonucleotides significantly inhibited cell proliferation and triggered apoptosis in Du-145 cells with enhanced expression of BRCA1. These findings indicate that BRCA1 interacts with the components of the JAK–STAT signaling cascade and modulates its activation, which may provide a new critical survival signal for the growth of breast, ovarian and prostate cancers in the presence of normal BRCA1

    Targeted insertion of regulatory elements enables translational enhancement in rice

    Get PDF
    In-locus editing of agronomically-important genes to optimize their spatiotemporal expression is becoming an important breeding approach. Compared to intensive studies on mRNA transcription, manipulating protein translation by genome editing has not been well exploited. Here, we found that precise knock-in of a regulating element into the 5’UTR of a target gene could efficiently increase its protein abundance in rice. We firstly screened a translational enhancer (AMVE) from alfalfa mosaic virus using protoplast-based luciferase assays with an 8.5-folds enhancement. Then the chemically modified donor of AMVE was synthesized and targeted inserted into the 5’UTRs of two genes (WRKY71 and SKC1) using CRISPR/Cas9. Following the in-locus AMVE knock-in, we observed up to a 2.8-fold increase in the amount of WRKY71 protein. Notably, editing of SKC1, a sodium transporter, significantly increased salt tolerance in T2 seedlings, indicating the expected regulation of AMVE knock-in. These data demonstrated the feasibility of such in-locus editing to enhance protein expression, providing a new approach to manipulating protein translation for crop breeding

    Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles

    Get PDF
    Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation

    Multi-skeleton model for top-down design of complex products

    No full text
    Generally, there are two alternative design approaches available to engineers: bottom-up and top-down. Considering the sharp increase in the complexity of most mechanical products, the top-down design approach is more widely adopted in the development of complex products. However, in traditional top-down design process, design parameters are communicated through single-skeleton models, and design units are strongly coupled due to the multi-dimensional complexity of products. Toward this end, a new top-down design approach based on multi-skeleton model is proposed in this article. First, in accordance with different kinds of design parameters, three major skeleton models are defined, including location skeleton model, published skeleton model, and design skeleton model. And the characteristics of multi-skeleton models are also described. Then, the top-down design process based on the multi-skeleton model is explored, especially in the multi-skeleton modeling phase. It is also illustrated in detail that how to realize design parameter transmission and design unit reuse. Subsequently, it elaborates the communicating way and structure optimization of design parameters to support parameters controlled publishing and design units reuse. Finally, a meteorological satellite and a crawler crane design cases are implemented to expound the feasibility and effectiveness of the proposed framework

    MEIG1 is essential for spermiogenesis in mice

    Get PDF
    Spermatogenesis can be divided into three stages: spermatogonial mitosis, meiosis of spermatocytes, and spermiogenesis. During spermiogenesis, spermatids undergo dramatic morphological changes including formation of a flagellum and chromosomal packaging and condensation of the nucleus into the sperm head. The genes regulating the latter processes are largely unknown. We previously discovered that a bi-functional gene, Spag16, is essential for spermatogenesis. SPAG16S, the 35 kDa, testis-specific isoform derived from the Spag16 gene, was found to bind to meiosis expressed gene 1 product (MEIG1), a protein originally thought to play a role in meiosis. We inactivated the Meig1 gene and, unexpectedly, found that Meig1 mutant male mice had no obvious defect in meiosis, but were sterile as a result of impaired spermatogenesis at the stage of elongation and condensation. Transmission electron microscopy revealed that the manchette, a microtubular organelle essential for sperm head and flagellar formation was disrupted in spermatids of MEIG1-deficient mice. We also found that MEIG1 associates with the Parkin co-regulated gene (PACRG) protein, and that testicular PACRG protein is reduced in MEIG1-deficient mice. PACRG is thought to play a key role in assembly of the axonemes/flagella and the reproductive phenotype of Pacrg-deficient mice mirrors that of the Meig1 mutant mice. Our findings reveal a critical role for the MEIG1/PARCG partnership in manchette structure and function and the control of spermiogenesis
    corecore