20,193 research outputs found

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(d∗d^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review

    Get PDF
    Direction of arrival (DOA) estimation from the perspective of sparse signal representation has attracted tremendous attention in past years, where the underlying spatial sparsity reconstruction problem is linked to the compressive sensing (CS) framework. Although this is an area with ongoing intensive research and new methods and results are reported regularly, it is time to have a review about the basic approaches and methods for CS-based DOA estimation, in particular for the underdetermined case. We start from the basic time-domain CSbased formulation for narrowband arrays and then move to the case for recently developed methods for sparse arrays based on the co-array concept. After introducing two specifically designed structures (the two-level nested array and the co-prime array) for optimizing the virtual sensors corresponding to the difference coarray, this CS-based DOA estimation approach is extended to the wideband case by employing the group sparsity concept, where a much larger physical aperture can be achieved by allowing a larger unit inter-element spacing and therefore leading to further improved performance. Finally, a specifically designed ULA structure with associated CS-based underdetermined DOA estimation is presented to exploit the difference co-array concept in the spatio-spectral domain, leading to a significant increase in DOFs. Representative simulation results for typical narrowband and wideband scenarios are provided to demonstrate their performance

    Extension of Nested Arrays with the Fourth-Order Difference Co-Array Enhancement

    Get PDF
    To reach a higher number of degrees of freedom by exploiting the fourth-order difference co-array concept, an effective structure extension based on two-level nested arrays is proposed. It increases the number of consecutive lags in the fourth-order difference coarray, and a virtual uniform linear array (ULA) with more sensors and a larger aperture is then generated from the proposed structure, leading to a much higher number of distinguishable sources with a higher accuracy. Compressive sensing based approach is applied for direction-of-arrival (DOA) estimation by vectorizing the fourthorder cumulant matrix of the array, assuming non-Gaussian impinging signals

    Extension of Co-Prime Arrays Based on the Fourth-Order Difference Co-Array Concept

    Get PDF
    An effective sparse array extension method for maximizing the number of consecutive lags in the fourth-order difference co-array is proposed, leading to a novel enhanced sparse array structure based on co-prime arrays (CPAs) with significantly increased number of degrees of freedom (DOFs). One method to exploit the increased DOFs based on nonstationary signals is also proposed, with simulation results provided to demonstrate the effectiveness of the proposed structure

    Isospin effect in the statistical sequential decay

    Get PDF
    Isospin effect of the statistical emission fragments from the equilibrated source is investigated in the frame of statistical binary decay implemented into GEMINI code, isoscaling behavior is observed and the dependences of isoscaling parameters α\alpha and β\beta on emission fragment size, source size, source isospin asymmetry and excitation energies are studied. Results show that α\alpha and β\beta neither depends on light fragment size nor on source size. A good linear dependence of α\alpha and β\beta on the inverse of temperature TT is manifested and the relationship of α=4Csym[(Zs/As)12−(Zs/As)22]/T\alpha=4C_{sym}[(Z_{s}/A_{s})_{1}^{2}-(Z_{s}/A_{s})_{2}^{2}]/T and β=4Csym[(Ns/As)12−(Ns/As)22]/T\beta=4C_{sym}[(N_{s}/A_{s})_{1}^{2}-(N_{s}/A_{s})_{2}^{2}]/T from different isospin asymmetry sources are satisfied. The symmetry energy coefficient CsymC_{sym} extracted from simulation results is ∼\sim 23 MeV which includes both the volume and surface term contributions, of which the surface effect seems to play a significant role in the symmetry energy.Comment: 8 pages, 8 figures; A new substantially modified version which has been accepted by the Physical Review

    Difficulties in probing density dependent symmetry potential with the HBT interferometry

    Full text link
    Based on the updated UrQMD transport model, the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters, and the CRAB analyzing program of the two-particle HBT correlation. An obvious non-linear dependence of the neutron-proton (or neutron-neutron) HBT correlation function (Cnp,nnC_{np,nn}) at small relative momenta on the stiffness factor γ\gamma of the symmetry potential energy is found: when γ≲0.8\gamma \lesssim 0.8, the Cnp,nnC_{np,nn} increases rapidly with increasing γ\gamma, while it starts to saturate if γ≳0.8\gamma \gtrsim 0.8. It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.Comment: 11 pages, 4 figure

    Displaced thinned coprime arrays with an additional sensor for DOA estimation

    Get PDF
    A new sparse array structure based on the recently proposed thinned coprime arrays is proposed to maximize the number of unique lags. The design process involves two stages: the first stage displaces one subarray from its original position for an increase in the number of lags; as the displacement results in the minimum interelement spacing equal to integer multiples of half-wavelength, an additional sensor at a distance of half-wavelength is then added in the displaced subarray to avoid spatial aliasing. The strategic location of the additional sensor results in a significant increase in the overall unique lags which can be utilized for direction-of-arrival estimation (DOA) using compressive sensing based methods. Furthermore, the new structure has excellent performance in the presence of mutual coupling as shown by simulation results
    • …
    corecore