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Extension of Co-Prime Arrays Based on the

Fourth-Order Difference Co-Array Concept
Qing Shen, Wei Liu Senior Member, IEEE, Wei Cui, and Siliang Wu

Abstract—An effective sparse array extension method for
maximizing the number of consecutive lags in the fourth-order
difference co-array is proposed, leading to a novel enhanced
sparse array structure based on co-prime arrays with signif-
icantly increased number of degrees of freedom (DOFs). One
method to exploit the increased DOFs based on non-stationary
signals is also proposed, with simulation results provided to
demonstrate the effectiveness of the proposed structure.

Index Terms—Sparse array, fourth-order difference co-array,
direction of arrival, compressive sensing, co-prime array.

I. INTRODUCTION

In the past, sparse arrays have been proposed for more

effective array processing [1]–[4], and co-array equivalence

plays an important role in designing various sparse structures

for underdetermined direction-of-arrival (DOA) estimation.

One class of arrays employing this concept is the co-prime

array (CPA) [5] and its recent generalizations [6], where both

the spatial smoothing [7], [8] based subspace methods [9],

[10] and compressive sensing (CS) based methods [6], [11]–

[13] can be used for DOA estimation. Co-prime frequencies

are utilized to generate equivalent CPAs based on a ULA in

[14], [15], and multi-frequency techniques have been presented

for DOA estimation using CPAs [16], [17].

On the other hand, fourth-order cumulant-based DOA es-

timation has been proposed to resolve more sources than

the number of physical sensors [3], [18], and the virtual

array concept for the fourth-order cumulant-based method is

presented in [19]. Based on the 2q-th order cumulants [20]–

[22], the 2q-th order difference co-array concept is proposed in

[23] for nested arrays. However, such cumulant-based methods

can not be applied to Gaussian sources and how to optimize the

high-order co-arrays effectively is still an unsolved problem.

If we check the DOFs provided by a CPA at the fourth-

order level, it is much smaller than a two-level nested array

(TL-NA) or a four-level nested array (FL-NA). This is not

surprising since the CPA is not designed for the fourth-

order case and so far the study of CPAs has always been

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Q. Shen is with the School of Information and Electronics, Beijing Institute
of Technology, Beijing, 100081, China, and also with the Department of
Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1
3JD, UK (e-mail: qing-shen@outlook.com).

W. Liu is with the Department of Electronic and Electrical Engineering,
University of Sheffield, Sheffield, S1 3JD, UK (e-mail: w.liu@sheffield.ac.uk).

W. Cui and S. Wu are both with the School of Information and Elec-
tronics, Beijing Institute of Technology, Beijing, 100081, China (e-mail:
cuiwei@bit.edu.cn; siliangw@bit.edu.cn).

limited to the second-order. Therefore, we here focus on

the problem of how to extend the CPA structure further

from the viewpoint of fourth-order difference co-array, and

propose a novel sparse array construction method, leading to

an extended structure called sparse array with fourth-order

difference co-array enhancement based on CPA (SAFE-CPA).

We first revisit the link between the second-order and the

fourth-order difference co-arrays, and offer some insights in

constructing array structures for the fourth-order difference co-

array by considering it as a result of applying the second-

order difference co-array operation twice. Then, the extension

method is developed by maximizing the number of consecutive

lags at the fourth-order stage. The resultant SAFE-CPA has a

significantly increased number of DOFs, exceeding that of a

nested array.

In our second contribution, to exploit the increased DOFs

of the new structure, instead of using the existing cumulant-

based method (for non-Gaussian stationary signals), we here

assume the signals are non-stationary (but not necessarily

non-Gaussian) and extend the second-order statistics based

method in [24] to the fourth order, developing a new CS-based

DOA estimation method for handling both Gaussian and non-

Gaussian sources.

This letter is organized as follows. A review of DOA

estimation for co-prime arrays is presented in Sec. II. The

sparse array extension method is proposed in Sec. III, while

the application with non-stationary signals is introduced in

Sec. IV. Simulation results are provided in Sec. V, and

conclusions drawn in Sec. VI.

II. DOA ESTIMATION FOR CO-PRIME ARRAYS

For an N -sensor linear array with a unit spacing d, the set

of sensor positions S is expressed as

S =
{
η0 · d, η1 · d, . . . , ηN−1 · d

}
, (1)

where ηn · d, n = 0, . . . , N − 1, is the position of the n-th

sensor, with ηn being an integer in our following study.

A typical CPA consists of two uniform linear sub-arrays.

The first sub-array has N2 sensors with an inter-element

spacing of N1d, and the second one has 2N1 sensors with

a spacing of N2d (another layout uses N1 sensors and our

proposed method is applicable to both configurations). With a

shared sensor at the zeroth positions, there are 2N1 +N2 − 1
sensors in total. We use S1 and S2 to represent the two sets

of sensor positions, i.e. S = S1

∪
S2.

S1 = {N1n2d, 0 ≤ n2 ≤ N2 − 1, n2 ∈ Z} ,

S2 = {N2n1d, 1 ≤ n1 ≤ 2N1 − 1, n1 ∈ Z} .
(2)
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Assume there are K mutually uncorrelated narrowband signals

sk(t) impinging from the directions θk, k = 1, . . . ,K. Then

we obtain the following array signal model

x[i] = A(θ)s[i] + n[i] , (3)

where x[i] is the observed signal vector, s[i] is the

source signal vector, and n[i] the noise vector. A(θ) =
[a(θ1), . . . , a(θK)] is the steering matrix, with each column

vector a(θk) representing the corresponding steering vector

a(θk) =
[
e−j

2πη0d

λ
sin(θk), . . . , e−j

2πηN−1d

λ
sin(θk)

]T
. (4)

The correlation matrix of the received signals is given by

Rxx = E
{
x[i]xH [i]

}
=

K∑

k=1

σ2
ka(θk)a

H(θk) + σ2
nIN , (5)

where E{·} is the expectation operator, σ2
k is the power of

the k-th signal, σ2
n represents the noise power, and IN is the

N ×N identity matrix. Vectorizing Rxx yields

z = vec {Rxx} = Ãs̃+ σ2
nĨN2 , (6)

where Ã = [ã(θ1), . . . , ã(θK)] with each column vector

ã(θk) = a∗(θk) ⊗ a(θk) (⊗ is the Kronecker product), and

s̃ =
[
σ2
1 , . . . , σ

2
K

]T
. The N2 × 1 vector ĨN2 is obtained by

vectorizing IN . For the virtual array in (6), CS-based methods

can be applied for DOA estimation [6], [11]–[13].

III. SPARSE ARRAY EXTENSION BASED ON THE

FOURTH-ORDER DIFFERENCE CO-ARRAY CONCEPT

A. The fourth-order difference co-array perspective

Definition 1: For the array with sensor positions S in (1),

the second-order difference co-array (known as difference co-

array) set is defined as CA = ΦA·d, where the set of difference

co-array lags ΦA = {ηn1
− ηn2

, 0 ≤ n1, n2 ≤ N − 1}.

Definition 2: The fourth-order difference co-array set is

defined as CB = ΦB · d, with the set of fourth-order dif-

ference co-array lags ΦB = {ηn1
+ ηn2

− ηn3
− ηn4

}, for

0 ≤ n1, n2, n3, n4 ≤ N − 1.

By permutation invariance, ΦB can be rewritten as

ΦB = {(ηn1
− ηn3

)− (ηn4
− ηn2

)} = {µ1 − µ2} , (7)

where µ1, µ2 ∈ ΦA.

As a result, the fourth-order difference co-array can be

obtained by applying the second-order difference operation

again to the virtual array at the difference co-array stage with

virtual sensors distributed in CA. The maximum number of

consecutive lags indicates the maximum number of virtual

uniform linear array (ULA) sensors generated, and with an

appropriate unit spacing between adjacent virtual sensors to

avoid spatial aliasing, DOFs provided by this ULA part can

be easily exploited through various DOA estimation methods.

Therefore, in the following, we consider how to maximize

the achievable number of consecutive virtual sensors for

quantitative evaluation, comparison, and optimal design.

The difference co-array lags in ΦA of the CPA can reach

consecutive integers from −N1N2−N1+1 to N1N2+N1−1

0 (N2 − 1)N1d

• · · · •

◦ · · · ◦ ⋄ · · · ⋄

0 (2N1 − 1)N2d︸ ︷︷ ︸
Co-prime array part

α0d · · · αN3−1d︸ ︷︷ ︸
The constructed third sub-array in SAFE-CPA

Fig. 1. A general structure of the proposed SAFE-CPA, consisting of
three uniform linear sub-arrays, with their sensors expressed as •, ◦, and ⋄,
respectively. α0 = 6N1N2 +2N1 − 2N2 +1 and αN3−1 = 4N1N2N3 +
2N1N2 + 2N1N3 −N2N3 −N2 +N3.

[6]. Note there are several non-consecutive lags in ΦA, and the

maximum and minimum difference co-array lags in ΦA are

(2N1−1)N2 and −(2N1−1)N2, respectively. With these non-

uniform features, we can derive that the fourth-order difference

co-array lags in ΦB can reach every integer from −3N1N2 −
N1 +N2 +1 to 3N1N2 +N1 −N2 − 1, and a higher number

of DOFs is then achieved.

B. Sparse array with fourth-order difference co-array en-

hancement based on CPA (SAFE-CPA)

The non-uniform features at the difference co-array stage

provided by the CPA are limited since the CPA structure

is not optimized for the fourth-order co-array. To exploit

the advantages provided by the fourth-order difference co-

array concept, a further developed sparse array structure called

SAFE-CPA is proposed by adding to it a third linear sub-array.

By maximizing the number of consecutive integer lags in the

resultant ΦB , we show in the following that the third sub-array

should start from the position
[
6N1N2 + 2N1 − 2N2 + 1

]
d

with an inter-element spacing
[
4N1N2+2N1−N2+1

]
d, and

for the range of consecutive integers in ΦB , we have:

Proposition 1: For the proposed SAFE-CPA in Fig. 1, the

range of consecutive integers in ΦB is from −M0 to M0 with

M0 =4N1N2N3 + 3N1N2 + 2N1N3

−N2N3 +N1 −N2 +N3 − 1 .
(8)

Proof: Consider constructing the third sub-array with sensor

positions αn3
d, 0 ≤ n3 ≤ N3−1 by examining the consecutive

lags at each stage associated with each newly added physical

sensor, where N3 is the sensor number of the third sub-

array. Since the difference co-array lags and the fourth-order

difference co-array lags are both symmetric about 0, we

only consider the positive part. In ΦA, except for the self-

difference co-array of the third sub-array under construction,

the minimum and maximum positive cross-difference co-array

lags associated with the n3-th sensor are αn3
− (2N1 − 1)N2

and αn3
, respectively. Then, the covered range of consecutive

integers at the fourth-order difference co-array stage associated

with the n3-th sensor is given by

φαn3
= {µ, νn3

≤ µ ≤ ζn3
} , with

νn3
= αn3

− 3N1N2 −N1 +N2 − 1 ,

ζn3
= αn3

+N1N2 +N1 − 1 .

(9)

For the starting position α0d, the lower bound ν0 in the

covered range should be the maximum integer in the consec-

utive lags in ΦB plus 1 to ensure the covered range by the
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TABLE I
COMPARISON OF THE FOURTH-ORDER DIFFERENCE CO-ARRAY LAGS

Array
Structures

Number of Sensors Number of Consecutive
Lags

TL-NA [25] N1 +N2 4N2(N1 + 1)− 3†

FL-NA [23]
∑

4

µ=1
Nµ + 1 2

∏
4

µ=1
(Nµ + 1)− 1

CPA 2N1 +N2 − 1 6N1N2 + 2N1 − 2N2 − 1
SAFE-CPA 2N1 +N2 − 1 +N3 2M0 + 1‡

Examples of different structures for comparison

Array
Structures

(N1, . . . , Nm)
2 ≤ m ≤ 4

Number of
Sensors

Number of
Consecutive Lags

TL-NA (4,5) 9 97
FL-NA (2,2,2,2) 9 161

CPA (3,4) 9 69
SAFE-CPA (2,3,3) 9 189

CPA (5,6) 15 177
SAFE-CPA (3,5,5) 15 705

† Derived similarly as the fourth-order co-array lags of the CPA.
‡ M0 = 4N1N2N3 +3N1N2 +2N1N3 −N2N3 +N1 −N2 +N3 − 1.

starting position is adjacent to the consecutive range of the

fourth order difference co-array of the CPA, i.e.

ν0 = α0 − 3N1N2 −N1 +N2 − 1 = 3N1N2 +N1 −N2.

Then we obtain

α0 = 6N1N2 + 2N1 − 2N2 + 1 . (10)

For the remaining sensors in the third sub-array, to ensure

that the covered ranges φαn3
, n3 = 0, 1, . . . , N3 − 1, are

adjacent to each other with the purpose of maximizing the

consecutive lags, we should have νn3
= ζn3−1 + 1, where

1 ≤ n3 ≤ N3 − 1. Finally we obtain

αn3
− αn3−1 = 4N1N2 + 2N1 −N2 + 1 . (11)

So the third sub-array is also a ULA starting from
[
6N1N2+

2N1 − 2N2 + 1
]
d with an inter-element spacing

[
4N1N2 +

2N1−N2+1
]
d. With M0 = ζN3−1 = 4N1N2N3+3N1N2+

2N1N3−N2N3+N1−N2+N3−1, the resultant consecutive

integers lie in the range from −M0 to M0, with a total number

of 2M0 + 1 integers.

The number of consecutive integers in ΦB is listed in Table I

for the CPA, the proposed SAFE-CPA, the TL-NA and the FL-

NA. We can see that with a fixed number of physical sensors,

a significant increase in the number of consecutive lags has

been achieved by the SAFE-CPA compared with the CPA. As

also shown, give the same nine sensors, the proposed structure

has provided the largest number of virtual ULA sensors at the

fourth-order difference co-array stage.

IV. APPLICATION TO DOA ESTIMATION FOR

NON-STATIONARY SIGNALS

We now consider an application to exploit the fourth-order

difference co-array by calculating the second-order difference

co-array twice. Such a scenario arises when the impinging

signals are non-stationary with two associated key assumptions

as shown below. This is different from the existing cumulant-

based method, which is applicable only to stationary non-

Gaussian signals.

Assumption 1: The uncorrelated source signals sk[i], k =
1, . . . ,K are wide-sense quasi-stationary within the frame

length P . Then the local statistical expectation σ2
k[p̃] =

E {sk[i] · s
∗

k[i]} for i ∈ {p̃ · P, p̃ · P + 1, . . . , (p̃+ 1)P − 1}
can be approximated by

σ2
k[p̃] ≈

1

P

(p̃+1)P−1∑

i=p̃·P

sk[i] · s
∗

k[i] , (12)

where p̃ = 0, . . . , P̃ − 1 is the frame index, and P̃ is the total

number of frames.

Assumption 2: σ2
k[p̃], k = 1, . . . ,K are wide-sense station-

ary and uncorrelated with each other. Then, we obtain

m̄k = E
{
σ2
k[p̃]

}
, σ̃2

k = E
{
(σ2

k[p̃]− m̄k)
2
}

, (13)

E
{
(σ2

k1
[p̃]− m̄k1

) · (σ2
k2
[p̃]− m̄k2

)
}
= 0, k1 ̸= k2 . (14)

Examples of quasi-stationary signals with uncorrelated station-

ary powers include many speech and audio signals. In [24],

an approach for generating synthetic quasi-stationary signals

was given, and will be used in our simulations.

Under Assumption 1, we can define the local correlation

matrix Rxx[p̃] = E
{
x[i] · xH [i]

}
within the p̃-th frame

Rxx[p̃] =
K∑

k=1

σ2
k[p̃]a(θk)a

H(θk) + σ2
nIN

≈
1

P

(p̃+1)P−1∑

i=p̃·P

x[i] · xH [i] .

(15)

Vectorizing Rxx[p̃] yields

z[p̃] = vec {Rxx[p̃]} = Ãs̃[p̃] + σ2
nĨN2 , (16)

where s̃[p̃] =
[
σ2
1 [p̃], . . . , σ

2
K [p̃]

]T
.

To obtain the fourth-order difference co-array, we apply

the difference co-array operation again after transforming the

virtual array model in (16) into another virtual model with

zero-mean equivalent impinging signals.

With Assumption 2, we calculate the following

z̄ = E {z[p̃]} = ÃE {s̃[p̃]}+ σ2
nĨN2 = Ãs̄+ σ2

nĨN2 , (17)

where s̄ is the expectation of s̃[p̃].
Subtracting z̄ from z[p̃] in (16), each equivalent impinging

signal in s̃[p̃] is then transformed into a zero-mean process

z̄[p̃] = z[p̃]− z̄ = Ã {s̃[p̃]− s̄} = Ãs̄[p̃], (18)

where s̄[p̃] = s̃[p̃]− s̄.

Then we apply the second-order difference co-array concept

again, and the correlation matrix is expressed as

Rzz = E
{
z̄[p̃] · z̄H [p̃]

}
=

K∑

k=1

σ̃2
kã(θk)ã

H(θk) , (19)

where σ̃2
k is given in (13). Here we are calculating a new

correlation matrix based on the virtual signals and the effect of

the number snapshots on the estimated new correlation matrix
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(b) Results for SAFE-CPA.

Fig. 2. DOA estimation results obtained for different array structures.

in (19) is similar to that of the traditional correlation matrix

calculation. Vectorizing Rzz yields

y = vec {Rzz} = Bu , (20)

where B = [b(θ1), . . . ,b(θK)] with each column vector

b(θk) = ã∗(θk)⊗ ã(θk), and u =
[
σ̃2
1 , . . . , σ̃

2
K

]T
.

(20) represents a further developed virtual array model

exploring the fourth-order difference co-array concept, with

the equivalent steering matrix B, the equivalent source signal

vector u, and the virtual sensors expressed as ΦB · d.

With a search grid of Kg potential incident angles

θg,0, . . . , θg,Kg−1, a steering matrix is constructed as Bg =[
b(θg,0), . . . ,b(θg,Kg−1)

]
. We also construct a Kg×1 column

vector ug with each entry representing a potential source

signal at the corresponding incident angle. Then our CS-based

DOA estimation employing the fourth-order difference co-

array concept is formulated as

min ∥ug∥1 subject to ∥y −Bgug∥2 ≤ ε , (21)

where ε is the allowable error bound, ∥·∥1 is the l1 norm

and ∥·∥2 the l2 norm. The Kg × 1 vector ug represent the

DOA estimation results over Kg grid points. The optimization

problem can be solved using CVX, a software package for

specifying and solving convex problems [26], [27]. Note there

are redundant entries in the formulation and those entries can

be combined together using the method in [13] to reduce

complexity and we will adopt it in our simulations.

V. SIMULATION RESULTS

Consider a 9-sensor array with d = λ/2, and (3, 4) for the

CPA, and (2, 3, 3) for the SAFE-CPA. The K source signals

are uniformly distributed between −60◦ and 60◦. A grid of

Kg = 3601 angles is formed within the angle range from

−90◦ to 90◦ with a step size of 0.05◦. ε is chosen to give the

best result through trial-and-error in every experiment. The

signal power expectation m̄k in (13) is used to calculate the

signal-to-noise ratio (SNR).

For the first set of simulations, the input SNR is 0 dB, and

the number of sources K = 55. The frame length P is 1000,

and the number of frames P̃ = 1000. Fig. 2 gives the results

for both the CPA and the proposed SAFE-CPA. Clearly, all the

sources have been distinguished successfully by the SAFE-

CPA, while the CPA has failed. Under the environment of
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Fig. 3. RMSEs with different array structures versus input SNR.
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Fig. 4. RMSEs with different frame length P and frame number P̃ .

Intel CPU I7-4700HQ with a clock speed of 2.40 GHz and 4

GB RAM, it took about 2.30s for the CPA and 5.40s for the

SAFE-CPA to obtain the results.

To compare their estimation accuracy, with K = 30 and

P = P̃ = 200, the root mean square error (RMSE) results are

shown in Fig. 3, where the case for the spatial smoothing based

MUSIC (SS-MUSIC) is also provided [5], [9]. Evidently, the

higher the input SNR, the higher its estimation accuracy.

Furthermore, the physical aperture for the SAFE-CPA is 87d
while it is 20d for the CPA. With a much larger aperture and

number of consecutive lags, the SAFE-CPA has consistently

outperformed the CPA. For the same SAFE-CPA, the CS-based

method has outperformed the SS-MUSIC due to exploration

of all unique co-array lags (SS-MUSIC only exploits the

consecutive lags).

Finally the values of P and P̃ are varied with a 0 dB SNR.

The RMSE results versus P with P̃ = 200 are shown in

Fig. 4 (a), while results versus P̃ with P = 200 are given in

Fig. 4 (b). As shown, with the increase of either P or P̃ , the

results become more accurate, due to better estimation of the

second-order statistics of the involved signals. As expected,

the performance of the SAFE-CPA is better than the CPA.

VI. CONCLUSION

An effective sparse array extension method has been pro-

posed to maximize the number of consecutive lags in the

fourth-order co-array. By applying it to the CPA, a new struc-

ture with three uniform sub-arrays was derived. To exploit the

significantly increased number of DOFs, the DOA estimation

problem for non-stationary signals is revisited and a novel two-

stage co-array operation is applied. As shown in simulations,

the proposed structure consistently outperforms the CPA due

to a much larger aperture and number of DOFs.
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[18] M. C. Doğan and J. M. Mendel, “Applications of cumulants to array
processing. i. aperture extension and array calibration,” IEEE Trans.

Signal Process., vol. 43, no. 5, pp. 1200–1216, May 1995.
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