21 research outputs found

    Ubp43 gene expression is required for normal Isg15 expression and fetal development

    Get PDF
    BACKGROUND: Isg15 covalently modifies murine endometrial proteins in response to early pregnancy. Isg15 can also be severed from targeted proteins by a specific protease called Ubp43 (Usp18). Mice lacking Ubp43 (null) form increased conjugated Isg15 in response to interferon. The Isg15 system has not been examined in chorioallantoic placenta (CP) or mesometrial (MM) components of implantation sites beyond 9.5 days post coitum (dpc). It was hypothesized that deletion of Ubp43 would cause disregulation of Isg15 in implantation sites, and that this would affect pregnancy rates. METHODS: Heterozygous (het) Ubp43 mice were mated and MM and CP implantation sites were collected on 12.5 and 17.5 days post-coitum (dpc). RESULTS: Free and conjugated Isg15 were greater on 12.5 versus 17.5 dpc in MM. Free and conjugated Isg15 were also present in CP, but did not differ due to genotype on 12.5 dpc. However, null CP had greater free and conjugated Isg15 when compared to het/wt on 17.5 dpc. Null progeny died in utero with fetal genotype ratios (wt:het:null) of 2:5:1 on 12.5 and 2:2:1 on 17.5 dpc. Implantation sites were disrupted within the junctional zone and spongiotrophoblast, contained less vasculature based on lectin B4 staining and contained greater Isg15 mRNA and VEGF protein in Ubp43 null when compared to wt placenta. CONCLUSION: It is concluded that Isg15 and its conjugates are present in implantation sites during mid to late gestation and that deletion of Ubp43 causes an increase in free and conjugated Isg15 at the feto-maternal interface. Also, under mixed genetic background, deletion of Ubp43 results in fetal death

    On the error-sum function of tent map base series

    No full text

    Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius

    No full text
    Estradiol (E2) enhances the anorectic action of apolipoprotein A-IV (apoA-IV), however, the intracellular mechanisms are largely unclear. Here we reported that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was significantly activated by E2 and apoA-IV, respectively, in primary neuronal cells isolated from rat embryonic brainstem. Importantly, the combination of E2 and apoA-IV at their subthreshold doses synergistically activated the PI3K/Akt signaling pathway. These effects, however, were significantly diminished by the pretreatment with LY294002, a selective PI3K inhibitor. E2-induced activation of the PI3K/Akt pathway was through membrane-associated ERα, because the phosphorylation of Akt was significantly increased by PPT, an ERα agonist, and by E2-BSA (E2 conjugated to bovine serum albumin) which activates estrogen receptor on the membrane. Centrally administered apoA-IV at a low dose (0.5 µg) significantly suppressed food intake and increased the phosphorylation of Akt in the nucleus tractus solitarius (NTS) of ovariectomized (OVX) rats treated with E2, but not in OVX rats treated with vehicle. These effects were blunted by pretreatment with LY294002. These results indicate that E2’s regulatory role in apoA-IV’s anorectic action is through the ERα-PI3K pathway in the NTS. Manipulation of the PI3K/Akt signaling activation in the NTS may provide a novel therapeutic approach for the prevention and the treatment of obesity-related disorders in females

    Easy to Remember, Easy to Forget? The Memorability of Creative Advertisements

    No full text
    Previous studies have revealed that creative advertisements are recognized and recalled better than their less creative counterparts. Remembering and forgetting are two sides of the same coin of memory, denoting memory’s storage and elimination functions, respectively, which can both potentially impact advertising effectiveness. To date, there appear to have been no published studies examining the memorability of creative advertisements from the perspective of forgetting. Therefore, this issue was investigated using an intentional forgetting paradigm in which participants were cued either to remember or forget individual advertisements. The results showed that recognition hit rate and recognition latency were better for creative advertisements than for standard advertisements in both the remember and forget conditions. Furthermore, an advertising effectiveness analysis indicated that advertisements rated as more creative were also more easily remembered. There was additionally an effect of creativity category on intentional forgetting, with a higher hit rate and shorter recognition latency for creative advertisements. These results indicate that creative advertisements are easy to remember, but hard to forget, even when an instruction to forget is given. The findings provide further evidence that creative advertisements are more memorable and confirm the value of creativity in advertising

    Impact of Sequential Lipid Meals on Lymphatic Lipid Absorption and Transport in Rats

    No full text
    The sequential meal pattern has recently received more attention because it reflects a phycological diet style for human beings. The present study investigated the effects of the second lipid meal on lymphatic lipid absorption and transport in adult rats following a previous lipid meal. Using the well-established lymph fistula model, we found that the second lipid meal significantly increased the lymphatic output of triglycerides, cholesterol, phospholipids, and non-esterified fatty acids compared with a single lipid meal. Besides that, the time reaching the peak of each lipid output was significantly faster compared with the first lipid meal. Additionally, the second lipid meal significantly increased the lymphatic output of apolipoprotein A-IV (ApoA-IV), but not apolipoprotein B-48 (ApoB-48) or apolipoprotein A-I (ApoA-I). Interestingly, the triglyceride/apoB-48 ratio was significantly increased after the second lipid meal, indicating the increased chylomicron size in the lymph. Finally, the second lipid meal increased the lymphatic output of rat mucosal mast cell protease II (RMCPII). No change was found in the expression of genes related to the permeability of lymphatic lacteals, including vascular endothelial growth factor-A (Vegfa), vascular endothelial growth factor receptor 1 (Flt1), and Neuropilin1 (Nrp1). Collectively, the second lipid meal led to the rapid appearance of bigger-sized chylomicrons in the lymph. It also increased the lymphatic output of various lipids and apoA-IV, and mucosal mast cell activity in the intestine

    Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet

    No full text
    The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females

    Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration

    No full text
    Abstract Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures
    corecore