59 research outputs found

    Temperature dependent dynamics of photoexcited carriers of Si2Te3 nanowires

    Full text link
    We report an optical study of the dynamics of photoexcited carriers in Si2Te3 nanowires at various temperatures and excitation powers. Si2Te3 nanowires were synthesized, by using gold as a catalyst, on a silicon substrate by the chemical vapor deposition method. The photoluminescence spectrum of Si2Te3 nanowires was primary dominated by defect and surface states related emission at both low and room temperatures. We observed that the decay time of photoexcited carries was very long (> 10 ns) at low temperatures and became shorter (< 2 ns) at room temperature. Further, the carrier decay time became faster at high excitation rates. The acceleration of the photoexcited carrier decay rates indicate the thermal quenching along with the non-radiative recombination at high temperature and excitation power. Our results have quantitatively elucidated decay mechanisms that are important towards understanding and controlling of the electronic states in Si2Te3 nanostructures for optoelectronic applications.Comment: 12 pages, 4 figures, submitte

    htSNPer1.0: software for haplotype block partition and htSNPs selection

    Get PDF
    BACKGROUND: There is recently great interest in haplotype block structure and haplotype tagging SNPs (htSNPs) in the human genome for its implication on htSNPs-based association mapping strategy for complex disease. Different definitions have been used to characterize the haplotype block structure in the human genome, and several different performance criteria and algorithms have been suggested on htSNPs selection. RESULTS: A heuristic algorithm, generalized branch-and-bound algorithm, is applied to the searching of minimal set of haplotype tagging SNPs (htSNPs) according to different htSNPs performance criteria. We develop a software htSNPer1.0 to implement the algorithm, and integrate three htSNPs performance criteria and four haplotype block definitions for haplotype block partitioning. It is a software with powerful Graphical User Interface (GUI), which can be used to characterize the haplotype block structure and select htSNPs in the candidate gene or interested genomic regions. It can find the global optimization with only a fraction of the computing time consumed by exhaustive searching algorithm. CONCLUSION: htSNPer1.0 allows molecular geneticists to perform haplotype block analysis and htSNPs selection using different definitions and performance criteria. The software is a powerful tool for those focusing on association mapping based on strategy of haplotype block and htSNPs

    Enriched protein screening of human bone marrow mesenchymal stromal cell secretions reveals MFAP5 and PENK as novel IL-10 modulators

    Get PDF
    The secreted proteins from a cell constitute a natural biologic library that can offer significant insight into human health and disease. Discovering new secreted proteins from cells is bounded by the limitations of traditional separation and detection tools to physically fractionate and analyze samples. Here, we present a new method to systematically identify bioactive cell-secreted proteins that circumvent traditional proteomic methods by first enriching for protein candidates by differential gene expression profiling. The bone marrow stromal cell secretome was analyzed using enriched gene expression datasets in combination with potency assay testing. Four proteins expressed by stromal cells with previously unknown anti-inflammatory properties were identified, two of which provided a significant survival benefit to mice challenged with lethal endotoxic shock. Greater than 85% of secreted factors were recaptured that were otherwise undetected by proteomic methods, and remarkable hit rates of 18% in vitro and 9% in vivo were achieved

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Resistive switching in Si2Te3 nanowires

    No full text
    As a silicon-based chalcogenide, semiconducting Si2Te3 has recently attracted attention as an emerging layered 2D material. Here, single-crystalline Si2Te3 nanowires (NWs) are synthesized by chemical vapor deposition (CVD). The Si2Te3 NWs grow along the [0001] direction, which is perpendicular to the 2D layers. The NWs exhibit a unique reversible resistance switching behavior driven by an applied electrical potential, which leads to switching of the NWs from a high-resistance state to a low-resistance state. This switched state is stable unless the opposite potential is applied to switch the resistance back. It is also noted that the polarity of the initially applied potential along the NWs defines the switch on and off directions, which become permanent once set. In combination with theoretical calculations, the resistance switching is explained by an internal structural change resulting from the applied potential. This novel resistance switching property for the silicon-based 2D materials is not only interesting for fundamental exploration but also holds promise for applications in memory devices

    Microcontact Printing of Proteins for Cell Biology

    No full text

    The complete mitochondrial genome of Hemitripterus villosus (Pallas, 1814) from Zhoushan archipelago

    No full text
    In this study, we used whole genome sequencing to obtain the complete mitochondrial genome of Hemitripterus villosus. This mitochondrial genome, consisting of 17,449 base pairs (bp), contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and 2 noncoding control regions (control region and origin of light-strand replication) as those found in other vertebrates. Control region, of 1799 bp in length, is located between tRNAPro and tRNAPhe. We identified short tandem repeat sequences in the control region, which contributed largely to the relatively long mitogenome. The complete mitogenome data provides useful genetic markers for the studies on the molecular identification, phylogenetic analysis and conservation genetics
    • …
    corecore