1,306 research outputs found

    RFID System Integration and Application Examples

    Get PDF

    Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction

    Full text link
    The availability of a large amount of electronic health records (EHR) provides huge opportunities to improve health care service by mining these data. One important application is clinical endpoint prediction, which aims to predict whether a disease, a symptom or an abnormal lab test will happen in the future according to patients' history records. This paper develops deep learning techniques for clinical endpoint prediction, which are effective in many practical applications. However, the problem is very challenging since patients' history records contain multiple heterogeneous temporal events such as lab tests, diagnosis, and drug administrations. The visiting patterns of different types of events vary significantly, and there exist complex nonlinear relationships between different events. In this paper, we propose a novel model for learning the joint representation of heterogeneous temporal events. The model adds a new gate to control the visiting rates of different events which effectively models the irregular patterns of different events and their nonlinear correlations. Experiment results with real-world clinical data on the tasks of predicting death and abnormal lab tests prove the effectiveness of our proposed approach over competitive baselines.Comment: 8 pages, this paper has been accepted by AAAI 201

    RFID Applications and Challenges

    Get PDF

    Reconsideration of the QCD corrections to the ηc\eta_c decays into light hadrons using the principle of maximum conformality

    Full text link
    In the paper, we analyze the ηc\eta_c decays into light hadrons at the next-to-leading order QCD corrections by applying the principle of maximum conformality (PMC). The relativistic correction at the O(αsv2){\cal{O}}(\alpha_s v^2)-order level has been included in the discussion, which gives about 10%10\% contribution to the ratio RR. The PMC, which satisfies the renormalization group invariance, is designed to obtain a scale-fixed and scheme-independent prediction at any fixed order. To avoid the confusion of treating nfn_f-terms, we transform the usual MS‾\overline{\rm MS} pQCD series into the one under the minimal momentum space subtraction scheme. To compare with the prediction under conventional scale setting, RConv,mMOM−r=(4.12−0.28+0.30)×103R_{\rm{Conv,mMOM}-r}= \left(4.12^{+0.30}_{-0.28}\right)\times10^3, after applying the PMC, we obtain RPMC,mMOM−r=(6.09−0.55+0.62)×103R_{\rm PMC,mMOM-r}=\left(6.09^{+0.62}_{-0.55}\right) \times10^3, where the errors are squared averages of the ones caused by mcm_c and ΛmMOM\Lambda_{\rm mMOM}. The PMC prediction agrees with the recent PDG value within errors, i.e. Rexp=(6.3±0.5)×103R^{\rm exp}=\left(6.3\pm0.5\right)\times10^3. Thus we think the mismatching of the prediction under conventional scale-setting with the data is due to improper choice of scale, which however can be solved by using the PMC.Comment: 5 pages, 2 figure
    • …
    corecore