1,697 research outputs found

    Realizing quantum controlled phase-flip gate through quantum dot in silicon slow-light photonic crystal waveguide

    Full text link
    We propose a scheme to realize controlled phase gate between two single photons through a single quantum dot in slow-light silicon photonic crystal waveguide. Enhanced Purcell factor and beta factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this silicon photonic crystal waveguide system provides tremendous potential for large-scale quantum information processing.Comment: 9 pages, 3 figure

    Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis

    Get PDF
    Objectives: Cellular energy metabolism is important for the function of all tissues, including cartilage. Recent studies indicate that superficial and deep subpopulations of articular chondrocytes (ACs) have distinct metabolic profiles. At the cellular and molecular level, osteoarthritis (OA) is characterised by alteration from a healthy homoeostatic state towards a catabolic state. Several molecular pathways, including transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signalling, have been identified as critical players in the pathogenesis and progression of OA. However, the manner in which these factors influence cellular energy metabolism in ACs is not well understood. This study investigates the effect of TGF-β or BMP signalling on energy metabolism in human articular chondrocytes (hACs). Methods: ACs were isolated from residual macroscopically full thickness and intact cartilage from the femoral condyle of human samples obtained from patients with OA. ACs were treated with Vehicle (control), TGF-β1 or BMP2 for 48–72 hours. Metabolic assays were performed to determine glucose consumption, lactate production and adenosine triphosphate (ATP) production, whereas the mitochondrial stress test was performed to determine oxygen consumption rate. Protein was isolated to assess translational activity and was evaluated using Western blot. Results: We showed that TGF-β1, known to maintain chondrocyte homoeostasis, stimulated glycolysis by upregulating key glycolytic factors, such as glucose transporter 1 (Glut1) and hexokinase II, while reducing oxidative phosphorylation in hACs. In contrast, BMP2 enhanced mitochondrial metabolism and oxidative phosphorylation and had a minimal effect on key glycolytic regulators. Conclusions: Our data revealed distinct metabolic programs induced by TGF-β1 and BMP2 in hACs, suggesting that the regulation of cellular metabolism may represent a new mechanism underlying the pathogenesis of OA. The translational potential of this article: The findings define the regulation of energy metabolism as a potential novel therapeutic approach for the treatment of OA

    Runx2 plays a central role in osteoarthritis development

    Get PDF

    Diffractive imaging of dissociation and ground state dynamics in a complex molecule

    Get PDF
    We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited state dynamics simulations. The molecules are excited by an ultra-violet femtosecond laser pulse to a state characterized by a transition from the iodine 5p orbital to a mixed 5p|| hole and CF2 antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wavepacket of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (non-bridged) structure in less than 200 fs.Comment: 13 pages, 11 figure

    In-Vivo Evaluation of Peripheral Refraction Changes with Single Vision and Multifocal Soft Contact Lenses

    Get PDF
    This study investigated in-vivo changes of peripheral refraction with commercially available single vision and multifocal soft contact lenses, utilizing different designs and various corrective power values. Starting at the fovea, wave-front aberrations were measured up to 30o nasal retinal eccentricity, in 10o increments, using a commercially available Shack-Hartmann aberrometer. Three different types of contact lenses were fitted in an adult subject’s right eye: Acuvue Oasys Single Vision (ASV), Proclear Multifocal D with 2.50 diopters (D) add power (PMD), and ArtMost SoftOK (SOK). Each lens type was fitted in corrective power values of -2.00 D, -4.00 D, and -6.00 D. Refractive errors were computed in power vector notation: The spherical equivalent (M), the Cartesian Jackson-Cross-Cylinder (J0), and the oblique Jackson Cross Cylinder (J45) from measured second order Zernike terms. Acuvue Oasys Single Vision lenses produced a slight myopic shift at 30o retinal periphery (-0.32 D ± 0.05) without significant differences between the various lens power values. Proclear Multifocal D lenses did not create clinically significant myopic shifts of at least -0.25 D. All SOK lenses produced clinically significant relative myopic shifts at both 20o (-0.61 D ± 0.08) and 30o (-1.42 D ± 0.15) without significant differences between the various lens power values. For all lens types and power values, off-axis astigmatism J0 was increased peripherally and reached clinical significance beyond 20o retinal eccentricity. The increased amount of off-axis astigmatism J0 did not show a significant difference for the same type of lenses with different dioptric power. However, at 30o retinal eccentricity, SOK lenses produced significantly higher amounts of off-axis astigmatism J0, compared with ASV and PMD lenses (SOK versus ASV versus PMD: -1.67 D ± 0.09, -0.81 D ± 0.07, and -0.72 D ± 0.15). Both ASV and SOK lenses showed no clinically significant differences in the amount of introduced astigmatic retinal image blur, with various lens power values. Proclear Multifocal D lenses showed a systematic increase of astigmatic retinal image blur with an increase of add power. At 30o retinal eccentricity, -6.00 D SOK lenses introduced 0.73 D astigmatic retinal image blur, while PMD and ASV lenses introduced 0.54 D and 0.37 D, respectively. In conclusion, relative peripheral refractions, measured in-vivo, were independent of the contact lenses central corrective power. The SOK contact lenses demonstrated a stronger capability in rendering relative peripheral myopic defocus into far periphery, compared to the other lens designs used in this study. This was accompanied by higher amounts of introduced astigmatic retinal image blur
    • …
    corecore