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Review Article

Runx2 plays a central role in Osteoarthritis development
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A B S T R A C T

Osteoarthritis (OA) is the most common form of arthritis, is the leading cause of impaired mobility in the elderly,
and accounts for more than a third of chronic moderate to severe pain. As a degenerative joint disorder, OA affects
the whole joint and results in synovial hyperplasia, degradation of articular cartilage, subchondral sclerosis,
osteophyte formation, and chronic pain. Currently, there is no effective drug to decelerate OA progression and
molecular targets for drug development have been insufficiently investigated. Anti-OA drug development can
benefit from more and precise knowledge of molecular targets for drug development. Runt-related transcription
factor 2 (Runx2) is a key transcription factor controlling osteoblast and chondrocyte differentiation and is among
the most promising potential therapeutic targets. Notably, Runx2 expression is upregulated in several murine OA
models, suggesting a role in disease pathogenesis. In this review article, we summarized recent findings on Runx2
related to OA development and evaluated its potential as a therapeutic target.
The translational potential of this article: A better understanding of the role of Runx2 in osteoarthritis pathogenesis
will contribute to the development of novel intervention of osteoarthritis disease.

Osteoarthritis (OA) is the most widespread joint disease worldwide,
and its prevalence has reached epidemic proportions [1]. By the year
2040, OA prevalence is projected to increase 49% to affect 78.4 million
US adults [2,3] and will be the dominant cause of physical disability and
morbidity among adults over 40 years of age [4]. OA is considered to be a
whole joint disease that involves cellular and molecular abnormalities,
such as articular cartilage degradation, hyperplasia of synovium, and
osteophyte formation [5].

Although there are no current disease-modifying therapies or in-
terventions to slow disease progression, significant progress has been
made on OA research in recent years. Studies using murine models of OA
indicate several growth factors, including transforming growth factor-β
(TGF-β), Wnt3a, and Indian hedgehog (Ihh), are involved in OA devel-
opment [6–12]. Other signaling factors, such as Smad3, β-catenin, and
hypoxia-inducible factors -2α (HIF-2α), may also have a key role in OA
disease progression [6–11]. Interestingly, one common hallmark of OA
animal models and human OA cartilage samples is the upregulation of
runt-related transcription factor 2 (Runx2). Therefore, it has been hy-
pothesized that Runx2 is a major transcriptional mediator that directly
regulates the expression of matrix degradation enzymes in articular

chondrocytes [12]. Since OA results from homeostatic failure of extra-
cellular matrix degradation, Runx2 may serve as a key marker and
regulator of OA development and progression.

Here, we have aimed to summarize the role of Runx2 in normal and
diseased joint tissue, its regulation, and its regulatory targets. These
findings point to a molecular pathway linking Runx2 expression to OA
pathogenesis, which may be targeted for therapeutic intervention. The
aim of this review article is to (1) provide a comprehensive overview of
recent findings of Runx2 as a novel target for OA treatment, (2) describe
Runx2 as a central mediator of OA development in joint tissue, and (3)
understand OA molecular pathways to accelerate the development of
novel therapeutic strategies.

Runx2 upregulation in murine models of OA

Recent studies utilizing different murine OA models have illuminated
the critical role of Runx2 in the development of OA. The chon-
droprotective effects of Runx2 deletion from these studies, summarized
below, suggest that Runx2 may be an attractive molecular target for
future OA treatment research.
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Destabilization of the medial meniscus (DMM) murine model

Destabilization of the medial meniscus (DMM) surgery induces
changes in joint stability, similar to those seen in sport injury-induced
and aging-related OA [14]. Therefore, the DMM mouse model is
widely used to investigate OAmechanisms and treatment [14–17]. Using
this model, Liao et al. deleted Runx2 in chondrocytes in adult mice at 8
weeks of age and assessed the effect on OA progression [17]. Histological
analysis on Runx2 conditional knockout (cKO) mice following DMM
surgery showed a significant decrease in the OA-like phenotype [17],
suggesting that Runx2 contributes to OA pathology. Consistent with this
model, cartilage fissures, fibrillation, and degradation at 12 weeks
postsurgery were reduced compared to the Cre-negative control [17].
Expression of matrix metalloproteinase-13 (MMP13), a potent enzyme
that targets the cartilage for degradation and is upregulated in late-stage
OA, was reduced at 8 to 12 weeks after DMM surgery in Runx2 cKO mice
[17]. Chondrocyte marker genes, such as Mmp9,13 and a disintegrin and
metalloproteinase with thrombospondin motifs (Adamts) 4,5,7,12, were
also markedly decreased [17]. Together, these findings indicate that the
deletion of Runx2 has substantial protective effects in murine chon-
drocytes following DMM surgery through the inhibition of multiple
matrix degradation enzymes.

TGF-β receptor II (Tgfbr2) conditional KO mice

The TGF-β/Smad signaling pathway contributes to OA development
and progression by mediating articular chondrocyte hypertrophy [7,
18–20]. TGF-β binds to TGF-β receptor II (Tgfbr2), leading to phos-
phorylation of heteromeric Smad2,3,4 complexes. The Smad complex
then translocates into the nucleus to interact with other DNA binding
proteins to regulate TGF-β/Smad signaling and induces OA pathology in
chondrocytes, as loss of TGF-β2 or TGF-β2 isoform leads to bone defects
in mice [21]. Overexpression of the dominant-negative Tgfbr2 (dnTgfbr2)
in transgenic mice causes extensive joint alterations that are similar to
human OA, including skeletal degeneration, proteoglycan reduction, and
progressive cartilage tissue degradation [18,22]. Smad3 KO mice and
Tgfbr2 cKO mice display the hallmarks of severe OA: progressive degra-
dation of articular cartilage and osteophyte formation [6,7]. In chon-
drocytes of Tgfbr2 cKOmice, Runx2mRNA and Runx2 protein levels were
found to be increased approximately 3- and 8-fold, respectively [13,26],
indicating that the pathology observed in Tgfbr2 cKO mice may be
mediated through Runx2.

Additional studies have also illustrated a relationship between TGF-
β and Runx2 expression. Using Tgfbr2 cKO mice [7,23], Shen et al.
demonstrated that (1) Tgfbr2 inhibition in articular cartilage tissue
upregulated the principal regulators of the matrix components Mmp13
and Adamts5, (2) Deletion of Mmp13 and Adamts5 ameliorated the OA
disease progression prompted by the reduction of TGF-β/Smad
signaling in Tgfbr2 cKO mice [7,23], and (3) Runx2 binding site mu-
tations largely prevented the inhibitory effect of TGF-β. Runx2 also
influenced the expression of Mmp13 and Adamts5 in vitro in cell culture
studies [7,23]. In addition, TGF-β treatment increased the expression of
cell cycle proteins while reducing Runx2 protein levels [24,25]. Among
the cell cycle proteins, cyclin D1/cyclin dependent kinase 4 (CDK4) was
specifically found to mediate the phosphorylation of Runx2, which
contributes to its eventual degradation by the proteasome [25,26].
Together, these findings suggest that impaired TGF-β signaling in-
creases Mmp13 expression through a pathway that involves Runx2.
Since Runx2 induces hypertrophic chondrocyte marker genes and
Mmp13 is the downstream target of Runx2, these findings suggest that
Runx2 plays a critical role in mediatingMmp13 and Adamts5 expression
during OA development.

In addition to the targeting of articular cartilage, TGF-β also acts on
subchondral bone tissue and affects subchondral bone remodeling lead-
ing to alterations in OA progression [27].

β-catenin activation mice

Human genetic association studies have correlated abnormal
β-catenin signaling with OA development [28]. However, β-catenin
deletion or activation causes embryonic or immediate postnatal
lethality [29]; thus, our understanding of abnormal regulation of
β-catenin remains incomplete in animal models. Conditional gene
activation of β-catenin in cartilage has offered some insight into the role
of this protein in early cartilage development. In β-catenin activation
mice, Zhu et al. observed markedly diminished cartilage formation,
severe cartilage damage, and accelerated articular chondrocyte matu-
ration [8]. Consistent with the OA development, β-catenin expression
was elevated in knee joint samples from OA patients [8]. Altogether,
the data are consistent with a key role for β-catenin in chondrocyte
differentiation and OA development.

Runx2 appears to have an important role downstream of β-catenin in
chondrocytes and endochondral bone development. Studies have estab-
lished that β-catenin binds to the Runx2 promoter and activates Runx2
expression [30–33]. Analysis of gene expression and morphological
changes in vivo further demonstrated that Runx2 is upregulated in the
bone collar, perichondrium, and primary spongiosa when β-catenin
signaling is active[35–37]. Alterations in β-catenin mediated Runx2
activation also led to dysregulation of osteoblast and chondrocyte func-
tion, degenerative joints, and bone mass alterations [32]. Furthermore,
Runx2 upregulation through β-catenin is essential for the full differenti-
ation of osteoblasts and for repression of the chondrogenic potential of
osteochondral progenitors [31,32]. These studies support the conclusion
that β-catenin mediated Runx2 action is essential in multiple steps of
chondrocyte differentiation and endochondral bone development.

Ihh transgenic mice

Hedgehog (Hh) signaling is a major modulator of skeletal develop-
ment and chondrocyte differentiation during embryonic development
and infancy [30,33–38]. The major Hh ligand in chondrocytes is the
Indian hedgehog (Ihh), a protein that is produced and secreted by pre-
hypertrophic chondrocytes. Mainly produced in cartilage, Ihh mediates
chondrocyte hypertrophy and endochondral bone formation by regu-
lating the conserved targets [39]. Of particular interest to the Ihh
pathway is the activation of glioma-associated oncogene homolog (Gli).
Gli is a major activator of Runx2 expression that promotes osteoblast
formation, and leads to chondrocyte hypertrophy [40].

In healthy adult cartilage, Ihh expression normally decreases with
age to undetectable levels [41]. However, Ihh also mediates chon-
drocyte differentiation and hypertrophy in early OA and is associated
with cartilage degeneration. Analysis of human OA cartilage and sy-
novial fluid samples revealed that Ihh production was increased
2.6-fold in OA cartilage and by 37% in OA synovial fluid [42]. The
dnTgfbr2 transgenic mice exhibited OA-like symptoms and increased
catabolic marker gene expression, including elevated Ihh expression
[18]. Ihh was also increased in response to early cartilage damage [41]
and was associated with increased Runx2, Mmp13, and collagen type II
alpha1 chain (Col2a1) expression. However, the complex network of
Ihh has been difficult to study in murine models, as conventional Ihh
knockout mice are embryonic lethal [9,39,40].

To explore the specific role of Ihh in OA, Zhou et al. utilized cartilage-
specific, inducible loss-of-function (LOF) Ihh transgenic mice. The mice
underwent DMM surgery at 3 months of age to induce posttraumatic OA.
Histological analysis of mice after DMM surgery demonstrated that Ihh
inactivation alleviates OA cartilage damage [43]. There was also a sig-
nificant decrease in downstream targets of Ihh, including genes Runx2,
Gli1, Gli2, Col10a1, andMmp13 in cartilage tissues of Ihh transgenic mice
[43]. These findings demonstrate that the deletion of Ihh downregulates
Runx2 expression and suggests chondroprotection in patients in the early
stage of OA [43].
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Lin et al. confirmed these findings and established the role of Ihh in
the regulation of Runx2 expression. In this study, articular chondrocytes
were first transfected with Runx2 small interfering RNA (siRNA) and
were then treated with Hh-ligand or Hh-blocking agent. Hh positively
regulated Adamts5 in the control cells but did not regulate Adamts5 in
chondrocytes with Runx2 deletion [9]. Interestingly, this relationship
between Hh and Runx2 seems to be specific to OA [9]; Runx2 and Hh had
similar functions yet discrete roles during normal chondrocyte growth
and development [44,45]. Therefore, Hh was concluded to indirectly
regulate Adamts5 in OA through Hh-mediated expression of Runx2 [9].

Nuclear factor-κB (NF-κB) KO mice

Nuclear factor-κB (NF-κB) orchestrates a wide range of stress-related
inflammatory responses and controls the growth, survival, and devel-
opment of many cell types [46]. The pathology of OA chondrocytes in
aging and inflammatory models is exacerbated by prolonged NF-κB
activation [47,48]. Once activated, NF-κB homodimers translocate to the
nucleus and regulate genes involved in extracellular matrix remodeling
and chondrocyte terminal differentiation [49].

Many in vivo and in vitro studies demonstrate a role for NF-κB
signaling in promoting the production of procatabolic mediators,
increased production of proinflammatory cytokines, and the modifica-
tion of inflammatory transcription factors [10,11,47,50–52]. Two pivotal
kinases, I-κB kinase (IKK)-α and -β, activate NF-κB homodimers, but
studies have shown that these two kinases have differential effects on
chondrocyte differentiation [53,54]. Stable knockdown (KD) of IKK-α or
IKK-β compromised extracellular matrix (ECM) remodeling by different
pathways and to different degrees [53,54]. Of note, IKK-α KD chon-
drocytes resulted in pronounced hypertrophic differentiation of articular
chondrocytes [55]. Interestingly, the effects of IKK-mediated NF-κB
signaling were intrinsic to OA chondrocytes since only ECM remodeling
was affected, and OA-like differentiation is conserved only to chon-
drocytes [55].

Using IKK-β cKO mice as an OA model, Chang et al. also investigated
the role of IKK-NF-κB activation and its relation to Runx2 in OA devel-
oped: specifically, they studied the role of NF-κB in inflammation-
mediated inhibition of tissue regeneration [56]. Deletion of IKK-β
repressed expression of a well-established target of NF-κB, IL-6, in cells
treated with proinflammatory cytokines, TNF, and IL-17 [56]. This sug-
gests that IKK-NF-κB may modulate hypertrophic-like conversion via the
control of Runx2, and thus, may be a pathway of interest to regulate
chondrocyte homeostasis in OA.

Hif-2α KO mice

One of the downstream effectors of NF-κB signaling is HIF-2α [47].
Studies have shown that HIF-2α regulates genes involved in endochon-
dral ossification by connecting inflammation-related chondrocyte hy-
pertrophy and ECM degradation [10]. In HIF-2α heterozygous KO mice,
surgically induced OA development and progression was markedly sup-
pressed [57], and HIF-2α haploinsufficiency decreased catabolic factors,
such as Mmp13, Mmp9 and Vegfa (vascular endothelial growth factor A)
[10,57]. HIF-2α also upregulated the production of the proinflammatory
cytokines IL-1β and TNF-α, which have been reported to be reduced
during the treatment with an IKK inhibitor [36,58]. These data indicate
that the NF-κB-targeted transcription factor HIF-2α increases the pro-
duction of catabolic factors and proinflammatory cytokines.

Further studies suggest that the combined action of C/EBP-β (CCAAT-
enhancer-binding protein beta) and Runx2 is essential to HIF-2α to
trigger Mmp13 expression [59]. Site-directed mutagenesis within the
Mmp13 promoter significantly represses HIF-2α promoter activity
induced by C/EBP-β and Runx2 [59]. Similarly, retroviral overexpression
of HIF-2α enhanced Cebpb expression in primary chondrocytes, while
dominant-negative HIF-2α suppressed Cebpb expression in chondrocytes
[59].

In addition, bioinformatics predictions identified that Runx2 and C/
EBP-β are potent transcriptional partners in chondrocytes. Mice with dual
KO of Cebpb and Runx2 were resistant to OA, exhibiting decreased
cartilage degradation and decreased expression of Mmp13 [59]. Cebpb
and Runx2were also coexpressed and colocalized in highly differentiated
chondrocytes during OA development in humans and in mice [59].
Hence, HIF-2α is a functional inducer, and Mmp13 is a target of Runx2
and C/EBP-β. Recent studies also demonstrated that excessive mechani-
cal loading promotes OA development through activation of the
gremlin-1-NF-κB pathway [60].

In summary, (1) overexpression of Runx2 in mice increased the
number of cartilage proteases expressed in chondrocytes [12,17], (2)
Runx2 expression level was elevated in human cartilage obtained from
OA patients [12,17], (3) Upregulation of Runx2 activated MMP13 and
Adamts5, which are matrix degradation enzymes, (4) Runx2 regulates
Mmp13 gene by directly mediating Mmp13 gene transcription [61] or
through mitogen-activated protein kinase (MAPK) pathways [12,17],
and (5) After induction of knee joint instability, heterozygous global
Runx2 KO mice or chondrocyte-specific Runx2 deletion had decreased
cartilage destruction and osteophyte formation [11–13].

Runx2 functions in different joint tissues

Cartilage degradation is the hallmark of OA progression and indicates
the irreversibility of the disease. However, OA affects the whole joint,
and pathological changes seen in OA patients include thickening of
subchondral bone, osteophyte formation, synovial inflammation [63,64],
degeneration of ligaments, and hypertrophy of the joint capsule [65,66].
Changes in periarticular muscles, nerves, fat pads, and bursa can also
contribute to OA development [65]. All these pathological changes could
impact the joint and OA as a whole joint failure [65].

Articular chondrocytes

Articular chondrocytes are suspected to be major players in the
initiation and progression of OA. Chondrocytes are mainly affected by
inflammatory cytokines and cartilage-degrading enzymes, which work
together to create the characteristic phagocyte infiltration in joint tissue
associated with inflammation and OA [48].

Previous studies have shown that Runx2 was significantly upregu-
lated during hypertrophic differentiation and was associated with cata-
bolic phenotypes observed in OA. Runx2 expression was tightly
correlated with increased expression of hypertrophic indicators, such as
Col10a1, Ihh, Mmp13, and Alp [67,68]. In articular chondrocytes, upre-
gulation of Runx2 is induced by a variety of factors, including (1) the
β-catenin/lymphoid enhancer-binding factor (LEF)/T-cell factor (TCF)
complex through Wnt signal pathway [69], (2) canonical Wnt signaling,
which mediates the switch from Sox9 to Runx2 pathway [29,70], (3)
initiation of rapidly accelerated fibrosarcoma (Raf)-mitogen-activated
protein (MEK1)/2-extracellular receptor kinase (ERK1)/2 cascade
through fibroblast growth factors (FGF2) [71,72], and (4) HIF-2α
communication with both the β-catenin and NF-κB pathways [30].

In addition, it has been reported that during the progression of OA,
type X collagen, alkaline phosphatase, Runx2, and MMP13 are expressed
in articular chondrocytes with decreased proteoglycans and expanded
calcified cartilage zones in articular cartilage [73,74].

In contrast, it has also been shown that the knocking down of Runx2
could not inhibit Col10a1 and Adamts5 expression and increasedMmp13
expression in human OA mesenchymal stem cells (MSCs). These findings
are opposite to the effects of Runx2 in chondrocytes [75].

In addition, DNA methylation studies by Bui et al. showed significant
differential expression of Runx2 and changes in methylation patterns in
primary articular cartilages derived from patients with OA compared to
patients with no history of OA [76]. Consistent with this data, genetic
analysis by Roach et al. and Fern�andez-Tajes et al. showed changes in
Runx2 methylation in human OA articular chondrocytes [77]. These
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studies indicate a role for Runx2 as a master transcription factor in
articular chondrocyte differentiation in OA.

Synovial cells

Studies by Scanzello et al. have characterized synovial pathology in
the development or progression of OA, especially in the context of
inflammation and pain [63]. Synovia with increased inflammation were
associated with unique chemokines and cytokines that may represent a
signature for OA development [75,78]. Specifically, cytokines known to
have catabolic effects on chondrocytes, including IL-8, CCL-5, IL-1, IL-6,
and TNF-α, were increased in the synovia [75,79–81]. Even in the
absence of phagocyte infiltration and inflammation of joint tissue
inflammation, OA synovial fluid had elevated levels of inflammatory
cytokines [75]. Synovial inflammation, whether dependent or indepen-
dent of joint inflammation, is a critical factor in OA pathogenesis and
warrants further investigation.

Interestingly, fibroblast growth factor 2 (FGF-2) was found to be
present in synovial fluid and highly correlated with the severity of
cartilage degeneration in OA [72]. FGF2 has been implicated in cartilage
homeostasis by controlling chondrocyte differentiation [82,83]. In
human OA cartilage, FGF-2 activated Runx2 through MEK/ERK signaling
and upregulated the expression ofMmp13. Correspondingly, inhibition of
the MEK/ERK pathway impeded Runx2 activation by FGF-2, and treat-
ment with FGF-2 increased Runx2 phosphorylation [84,85]. Together,
FGF-2, which accrues in synovial fluids of OA joints [72], is suggested to
contribute to Runx2 activation leading to Mmp13 upregulation.

Subchondral bone cells

It has been well established that Runx2 is critical for skeletal, carti-
lage, and condylar development [86–88]. Shibata et al. have demon-
strated that the absence of condylar cartilage development in Runx2�/�

mice and Runx2 global KO mice display stunted growth and die shortly
after birth due to an absolute absence of bone tissue [86–88]. This sug-
gests that Runx2 is essential for condylar cartilage formation [87].

Since Runx2 plays a central role in chondrocyte hypertrophy, the
characteristic of OA pathogenesis, Liao et al. studied its specific role in
subchondral bone cells using Runx2 cKO mice. Interestingly, Runx2
deletion blocks chondrocyte translocation into the subchondral bone
region and inhibits chondrocyte transdifferentiation into progenitor cells
[89]. Comparatively, histological analysis demonstrated extensive
chondrocyte growth in condylar cartilage and subchondral bone in
control mice, indicating a key role for Runx2 in subchondral bone
remodeling [89]. Runx2 was also highly expressed in proliferative and
hypertrophic chondrocytes, suggesting Runx2 regulates subchondral
bone remodeling. Combined with studies demonstrating that Runx2
deletion causes loss of hypertrophic chondrocytes [17], the findings by
Shibata et al. indicate that Runx2 is essential in orchestrating the pro-
liferation and hypertrophic progression at the postnatal stage.

Meniscus

Changes in the meniscus are well documented in OA, and knee joint
degeneration often starts with meniscal lesions [67,90–92]. In fact, this
high interdependency of OA and the meniscus is why meniscectomy is
now obsolete, as the procedure inevitably leads to the development of OA
[90–92]. While the outer, vascularized meniscus has been shown to re-
turn to normal function after surgical repair [93,94], it is traditionally
thought that degeneration of the inner meniscus is difficult to address
because it is avascular, and thus, unable to self-regenerate to full func-
tionality [95–97]. However, recent studies have revealed that the inner
meniscus responds to growth factors and fibrin clots [92,94,98,99], and
thus, it has been proposed that the inner meniscus harbors cells capable
of regeneration [91]. Of note, Muhammad et al. described the regener-
ative potential of avascular meniscal tissue obtained from late-stage OA

patients prior to knee replacement. Surprisingly, an explant culture of the
avascular part of the inner meniscus obtained from an OA patient led to
the discovery of a group of migratory, multilineage, and multipotent cells
[92]. These new cells, which have been termed as human meniscus
progenitor cells (MPCs), were found only in the diseased tissue but not in
healthy controls. These MPCs seem to be modulated by Runx2, consistent
with previous studies. There was a greater level of Runx2 and a simul-
taneous reduction of TGF-β in diseased meniscal specimens. There were
almost undetectable levels of Runx2 and a reduction in Runx2 mRNA in
healthier specimens. When 3D explant cultures of MPCs from human
inner meniscal tissue were differentiated into cells of chondrogenic
lineage, cells from damaged meniscus showed no Runx2 levels and
increased Sox9 levels. Knocking down of Runx2 via siRNA in MPCs
demonstrated the upregulation of Sox9 and Smad2. The data correlate
with previous findings that the regulation of Runx2 is the key to OA
development. These findings also suggest that Runx2 is a major regula-
tory factor of OA progression in the meniscus and is a potential drug
target for regeneration in the diseased meniscus.

These data were also recapitulated in the aforementioned studies
using the DMM model in Runx2 KO mice [17,100]. Surgical destabili-
zation of the medial meniscus is a technique widely used as an OAmodel,
as DMM surgery leads to degeneration of articular cartilage and shows
OA-like pathology in the knee joint [17]. With the inhibition of Runx2 in
the DMM-induced OA mouse model, Liao et al. have demonstrated that
Runx2 is a significant contributor to OA disease in the meniscus and can
serve as a target for potential therapeutics.

Up-regulation of Runx2 in joint tissue

Since OA is a whole joint disease, its initiation and progression
remain poorly understood, especially at the molecular level. Recent ev-
idence suggests epigenetic and microRNA (miRNA) alterations may play
a role in OA disease pathology. Several miRNAs and DNA methylation
patterns have been reported to regulate Runx2 expression in OA carti-
lage. These findings suggest that epigenetic modifications or miRNA
regulation may serve as important mediators of OA.

MicroRNA regulation of Runx2

MicroRNAs are short non-coding RNA molecules that regulate gene
expression, especially in the context of embryonic and hematopoietic
stem cells [101]. Although our understanding of miRNAs and their role in
mesenchymal stem cells (MSCs) is scant, several transcription factors are
known to modulate MSC differentiation into chondrocytes and osteo-
blasts. Of the transcriptional factors identified, Runx2 plays a unique
multifunctional role in chondrogenesis and osteogenesis [102–104]. The
deletion of the miRNA processing enzyme Dicer significantly reduced the
expression of Runx2-related miRNAs and interrupted bone formation.
Specifically, miR-105 binds to Runx2 in chondrocytes [105], and the
downregulation of miR-105 in OA cartilage was associated with
decreased Runx2, Adamts7, and Adamts12 expression [105]. Addition-
ally, miRNA-145 indirectly regulates Runx2 by relieving Sox9-mediated
repression of Runx2, and thus, the overexpression of miR-145-induced
mRNA levels of Runx2 [106]. Similarly, miR-140 targeted and pro-
moted chondrocyte hypertrophy and was specifically expressed in
cartilage tissue [107]. Its chondroprotective effect against OA progres-
sion has been linked to the downregulation of several proteins involved
in cartilage destruction, such as Mmp13 and Admats5 [108,109]. Lastly,
miR-204 decreased chondrocyte proliferation and ameliorated the
OA-like phenotype in rodent models in a Runx2-dependent mechanism
[102,104]. Since Runx2 protein expressionwas significantly increased by
miR-204 Antagomir, it suggests that miR-204 is an endogenous attenu-
ator of Runx2 in MSCs [102,104,110]. Consistent with the in vitro find-
ings, miR-204/miR-211 double KO mice developed severe,
time-dependent OA development and progression, indicating the key
role of regulation of Runx2 in OA development [111]. Together, it can be
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concluded that Runx2-miRNA interaction is an area of interest to OA
development and progression.

Epigenetic regulation of Runx2

Epigenetics alter the gene expression without changes in the DNA
sequence and may significantly contribute to gene regulation and protein
expression. Although the genetic code is identical for every cell in the
body, epigenetic regulation and changes are often location- and cell-type-
specific [112]. Therefore, disruption of an established epigenetic
network can cause several major pathologies, including OA [114,115].

Several genome-wide profile studies revealed that the DNA
methylation-dependent alteration might contribute to biological pro-
cesses in human OA articular chondrocytes [113–115]. Fern�andez-Tajes
et al. identified 91 differentially methylated probes that were tightly
associated with a specific cluster of OA patients. Among these genes,
Runx2 methylation was markedly decreased [113]. Similarly, studies by
Bui et al. examined the effect of DNA methyltransferase inhibitor Aza on
the expression of genes associated with cartilage, epigenetics, and cell
senescence. Gene expression analysis revealed that Runx2was differently
expressed between control and OA chondrocytes treated with Aza [76].

Most significantly, genome-wide methylation analysis using cartilage
DNA revealed seven CpG sites located 82 kb upstream of Runx2 and
Supt3h, a chromatin remodeling protein [115]. Additionally, the UK
GWAS arcOGEN study [116] identified a common single nucleotide
polymorphism (SNP) associated with OA susceptibility, and Rice et al.
showed that this SNP was located within and flanking differentially
methylated regions. OA disease progression was strongly affected by
genetic and epigenetic activity within this region. It was concluded that
Runx2was strongly associated with OA susceptibility and was a principal
target in modulating the methylation patterns of OA disease [117].
Because Runx2 expression is modulated by DNA methylation and is
associated with OA genetic risk, Runx2 epigenetic regulation is a realm
for further investigation and potential intervention.

Runx2 downstream target genes

OA disease progression is highly complex and involves numerous
interrelated events that eventually lead to decreased chondrocyte protein
synthesis and catabolic protease activation. Specifically, matrix metal-
loproteinases (MMPs) and aggrecanases (Adamts) contribute widely to
aggrecan loss. A subfamily of collagenases, MMP1, 8, and 13, are
involved in the cartilage destruction. MMP1 is expressed in fibroblast and
macrophages [118], MMP8 cleaves aggrecan at specific sites [119], and
MMP13 interacts primarily with type II collagen [119]. Adamts4
(aggrecanase 1) and Adamts5 (aggrecanase 2) have been associated with
fundamental structural degradation underlying human OA. Although
there is no universal agreement of which primary aggrecanase is
responsible for aggrecan degradation in human OA [120–122], Adamts
have significant potential for novel OA drug design.

MMPs

In recent studies, MMP13 has been shown as a downstream target of
Runx2. In Runx2 KO mice, OA pathology and progression were amelio-
rated due to a mechanism that involved a significant decrease in Mmp13
expression [123]. Runx2 directly regulatesMmp13 promotor activity and
MMP13 expression in vivo. Real-time RT-PCR analysis demonstrated
upregulated Runx2 mRNA expression was correlated with decreased
Mmp13 expression in vivo [124]. Hypertrophic chondrocyte markers,
such as Mmp13 and Col10a1, were upregulated in vitro under cyclic
tensile strain (CTS) [125]. This complex mechanoresponsive mechanism
was found to be under the control of the Runx2/Cbfa1 pathway that leads
to the regulation of Mmp13 expression in primary chondrocytes [13,84,
124–126]. Tetsunaga et al. also demonstrated the upregulation ofMmp13
with overexpression of Runx2 and the downregulation of Mmp13 with

Runx2 siRNA [127]. Chromatin immunoprecipitation (ChIP) assay
demonstrated that Runx2 directly binds to the Mmp13 promoter in rat
chondrosarcoma cells [7], which was confirmed by clustered regularly
interspaced short palindromic repeats (CRISPR) gene deletion studies. It
has been determined thatMmp13 expression was mediated by Runx2 via
a complex arrangement of enhancers [124,128,129]. Combined with the
observation that Mmp13 is a marker of chondrocyte hypertrophy [38],
Runx2 is a key mediator of stress-induced Mmp13 expression [125,127]
and play a key role in OA pathogenesis [62,84,126,130].

Adamts

Over the past decade, many ex vivo and in vivo studies have demon-
strated that significant upregulation of Runx2 may lead to catabolic re-
sponses in chondrocytes [19,20,131–134]. The observed changes in
TGF-β, β-catenin, Ihh, and FGF pathways have shown to converge on
Runx2 regulation, primarily throughout the expression of MMPs and
Adamts activity [59,120,134]. Thirunavukkarasu et al. demonstrated
that Runx2 overexpression could increase Adamts5 expression by 5- and
7-fold over the control in human chondrosarcoma cells and in primary
bovine chondrocytes, respectively [135]. In another study, cotransfec-
tion with Runx2 siRNA together with Tgfbr2 siRNA repressed stimulation
of Adamts5 and Mmp13 expression [7]. CTS studies also confirmed that
Adamts5 expression is controlled by Runx2, as CTS induction of Runx2
expression was also associated with increased Adamts5 expression [127].
Similarly, the transfection of Runx2 siRNA resulted in significant
downregulation of Adamts5 [127]. In addition, Adamts5 KO mice
noticeably reduced the severity of cartilage destruction with surgically
induced joint instability. This study demonstrated that Adamts5 single
gene deletion abrogated OA-like cartilage destruction and concluded that
Adamts5 is a primary factor responsible for OA cartilage degradation
[13]. With noteworthy data showcasing Runx2 as a key transcription
factor regulating these genes, targeting Runx2 may be a key therapeutic
strategy in OA cartilage to ameliorate disease onset and progression.

Conclusion

In summary, Runx2 was identified as a major marker of OA disease
that is highly expressed in OAmurine models and human patients. Runx2
was upregulated in multiple OA mouse models, including DMM, Tgfbr2
conditional KO, β-catenin activation, Ihh transgenic, and NF-κB KO mice
models. In most studies, multiple matrix degradation enzymes, Mmp13
and Adamts5, and their corresponding regulatory genes were highly
involved, providing compelling evidence for Runx2 as a transcriptional
factor that controls the expression of these genes. Together, these studies
suggest that expression of Runx2 and development of OA is through a
fine balance of multiple factors, especially through the activation of
β-catenin, Wnt, Ihh, IKK-α, TGF-β, and Hif-2α signaling pathways. Many
studies also implicated the role of Runx2 in different joint tissues, such as
the meniscus, synovial cells, and subchondral bone cells. Therefore,
Runx2 could serve as a novel molecular target for not only OA progres-
sion but also a target to reduce pain and inflammation associatedwith OA
disease. In addition to Runx2, Runx1 has also been shown to be involved
in OA development which may serve as a drug target for OA treatment
[136].
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