42 research outputs found

    ZINC DEFICIENCY AND MECHANISMS OF ENDOTHELIAL CELL DYSFUNCTION

    Get PDF
    Atherosclerosis is a chronic inflammatory disease thought to be initiated by endothelial cell dysfunction. Research described in this dissertation is focused on the role of zinc deficiency in endothelial cell activation with an emphasis on the function of the transcription factors nuclear factor-κB (NF-κB), peroxisome proliferator activated receptor (PPAR), and the aryl hydrocarbon receptor (AhR), which all play critical roles in the early pathology of atherosclerosis. Cultured porcine aortic vascular endothelial cells were deprived of zinc by the zinc chelator TPEN and/or treated with the NF-κB inhibitor CAPE or the PPARγ agonist rosiglitazone, followed by measurements of PPARα expression, cellular oxidative stress, NF-κB and PPAR DNA binding, COX-2 and E-selectin expression, and monocyte adhesion. Cellular labile zinc deficiency increased oxidative stress and NF-κB DNA binding activity, and induced COX-2 and Eselectin gene expression, as well as monocyte adhesion in endothelial cells. CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-κB signaling. PPAR can inhibit NF-κB signaling. Zinc deficiency down-regulated PPARα expression and PPAR DNA binding activity in endothelial cells. Zinc deficiency compromised PPARγ transactivation activity in PPARγ and PPRE co-transfected rat aortic vascular smooth muscle cells. Furthermore, rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency. Most of these effects of zinc deficiency could be reversed by zinc supplementation. An in vivo study utilizing the atherogenic LDL-R-/- mouse model generally supported the importance of PPAR dysregulation during zinc deficiency. LDLR-/- mice were maintained for four weeks on either zinc deficient or zinc adequate diets. Half of the mice within each zinc group were gavaged daily with rosiglitazone during the last stage of the study. Selected inflammation and lipid parameters were measured. The anti-inflammatory properties of rosiglitazone were compromised during zinc deficiency. Specifically, rosiglitazone induced inflammatory genes (MCP-1) in abdominal aorta only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS in abdominal aorta of the mice. Rosiglitazone significantly up-regulated liver IκBα protein expression only in zinc adequate mice. Plasma data also suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. Zinc deficiency also altered PPAR-regulated lipid metabolism in LDL-R-/- mice. Specifically, zinc deficiency increased plasma total cholesterol, and non- HDL (VLDL, IDL and LDL)-cholesterol. Plasma total fatty acids tended to be increased during zinc deficiency, and rosiglitazone treatment resulted in similar changes in fatty acid profile in zinc deficient mice. FAT/CD36 expression in abdominal aorta was upregulated by rosiglitazone only in zinc-deficient mice. In contrast, rosiglitazone treatment markedly increased LPL expression only in zinc-adequate mice. These data suggest that in this atherogenic mouse model treated with rosiglitazone, lipid metabolism can be compromised during zinc deficiency. AhR is another transcription factor involved in the development and homeostasis of the cardiovascular system. Cultured porcine aortic endothelial cells were exposed to the AhR ligands PCB77 or beta-naphthoflavone (β-NF) alone or in combination with the zinc chelator TPEN, followed by measurements of the AhR responsive cytochrome P450 enzymes CYP1A1 and 1B1. Zinc deficiency significantly reduced PCB77- induced CYP1A1 activity and mRNA expression, as well as PCB77 or β-NF-induced CYP1A1 protein expression, which could be restored by zinc supplementation. These data suggest that adequate zinc is required for the activation of the AhR-CYP1A1 pathway. Impairment of the AhR pathway presents an additional mechanism by which zinc deficiency negatively affects transcription factor function and homeostasis of the vascular system. Taken together, zinc nutrition can markedly modulate the pathogenesis of inflammatory diseases such as atherosclerosis

    "Утечка" научных статей из Китая: почему это происходит, и можно ли это остановить?

    Get PDF
    Рассматриваются причины "утечки" первоклассных научных работ из Китая за рубеж и предлагаются меры по остановке этого процессаРыбина, О.Московкин, В.М.Learned Publishin

    "Утечка" научных статей из Китая: почему это происходит, и можно ли это остановить?

    No full text
    Рыбина, О.Московкин, В.М.Learned PublishingРассматриваются причины "утечки" первоклассных научных работ из Китая за рубеж и предлагаются меры по остановке этого процесс

    Role of DNA polymerase η in the bypass of abasic sites in yeast cells

    No full text
    Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase η (Polη) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as −1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Polη (rad30), Rev1, Polζ (rev3), and both Polη and Polζ, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polζ, but significant A insertion was still detected in these mutant cells. While purified yeast Polα effectively inserted an A opposite the AP site in vitro, purified yeast Polδ was much less effective in A insertion opposite the lesion due to its 3′→5′ proofreading exonuclease activity. Purified yeast Polη performed extension synthesis from the primer 3′ A opposite the lesion. These results show that Polη is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Polη is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains

    Zinc nutritional status modulates expression of AhR-responsive P450 enzymes in vascular endothelial cells

    No full text
    Zinc has anti-inflammatory properties and is crucial for the integrity of vascular endothelial cells, and the development and homeostasis of the cardiovascular system. The aryl hydrocarbon receptor (AhR) which is expressed in the vascular endothelium also plays an important role in responses to xenobiotic exposure and cardiovascular development. We hypothesize that cellular zinc can modulate induction of AhR-responsive genes in endothelial cells. To determine if zinc deficiency can alter responses to AhR ligands, aortic endothelial cells were exposed to the AhR ligands 3,3′,4,4′-tetrachlorobiphenyl (PCB77) or beta-naphthoflavone (β-NF) alone or in combination with the membrane permeable zinc chelator TPEN, followed by measurements of the AhR-responsive cytochrome P450 enzymes CYP1A1 and 1B1. Compared to vehicle-treated cells, both PCB77-induced CYP1A1 activity (EROD) and mRNA expression were significantly reduced during zinc deficiency. In addition, PCB77 and β-NF-mediated up-regulation of CYP1A1 and CYP1B1 protein expression was significantly reduced in zinc-deficient endothelial cells. The inhibition of CYP1A1 and CYP1B1 protein expression caused by zinc deficiency was reversible by cellular zinc supplementation. Overall, our results strongly suggest that nutrition can modulate an environmental toxicant-induced biological outcome and that adequate levels of individual nutrients such as zinc are necessary for induction of AhR-responsive genes in vascular endothelial cells

    Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase ζ is stimulated by yeast Rev1 protein

    No full text
    Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase ζ (Polζ) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polζ and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,N(6)-ethenoadenine adduct. Purified yeast Polζ was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polζ, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polζ-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polζ-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polζ at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polζ-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polζ is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polζ and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells

    The behaviors of gas-liquid two-phase flow under gas kick during horizontal drilling with oil-based muds

    No full text
    Natural gas is easily soluble in oil-based muds (OBM), leading to complex flow behavior in wellbores, especially in horizontal wells. In this study, a new transient flow model considering wellbore-formation coupling and gas solubility on flow behavior is developed to simulate gas kicks during horizontal drilling with OBM. Furthermore, the effect of gas solubility on parameters such as bottom-hole pressure (BHP), gas void fraction and mixture velocity in the flow behavior is analyzed. Finally, several critical factors affecting flow behavior are investigated and compared to gas kicks in water-based muds (WBM) where the effect of solubility is neglected. The results show that the invading gas exists as dissolved gas in the OBM and as free gas in the WBM. Before the gas escapes from the OBM, the pit gain is zero and there is barely any change in the BHP, annulus return flow rate and mixture velocity, which means that detecting gas kicks through these warning signs can be challenging until they get very close to the surface and develop rapidly. However, in WBM drilling, these parameters change quickly with the increasing gas kick time. Additionally, for both cases, the longer the horizontal length and the greater reservoir permeability, the greater the decrease in BHP, and the shorter the time for gas to migrate from the bottom-hole to the wellhead. A larger flow rate contributes to a greater initial BHP and a lesser BHP reduction. This research is of value in characterizing gas kick behavior and identifying novel ways for early gas kick detection during horizontal drilling with OBM

    A Multi-Site Study on Knowledge, Attitudes, Beliefs and Practice of Child-Dog Interactions in Rural China

    Get PDF
    This study examines demographic, cognitive and behavioral factors that predict pediatric dog-bite injury risk in rural China. A total of 1,537 children (grades 4–6) in rural regions of Anhui, Hebei and Zhejiang Provinces, China completed self-report questionnaires assessing beliefs about and behaviors with dogs. The results showed that almost 30% of children reported a history of dog bites. Children answered 56% of dog-safety knowledge items correctly. Regressions revealed both demographic and cognitive/behavioral factors predicted children’s risky interactions with dogs and dog-bite history. Boys behaved more riskily with dogs and were more frequently bitten. Older children reported greater risks with dogs and more bites. With demographics controlled, attitudes/beliefs of invulnerability, exposure frequency, and dog ownership predicted children’s self-reported risky practice with dogs. Attitudes/beliefs of invulnerability, dog exposure, and dog ownership predicted dog bites. In conclusion, both demographic and cognitive/behavioral factors influenced rural Chinese children’s dog-bite injury risk. Theory-based, empirically-supported intervention programs might reduce dog-bite injuries in rural China

    A Multi-Site Study on Knowledge, Attitudes, Beliefs and Practice of Child-Dog Interactions in Rural China

    Get PDF
    This study examines demographic, cognitive and behavioral factors that predict pediatric dog-bite injury risk in rural China. A total of 1,537 children (grades 4–6) in rural regions of Anhui, Hebei and Zhejiang Provinces, China completed self-report questionnaires assessing beliefs about and behaviors with dogs. The results showed that almost 30% of children reported a history of dog bites. Children answered 56% of dog-safety knowledge items correctly. Regressions revealed both demographic and cognitive/behavioral factors predicted children’s risky interactions with dogs and dog-bite history. Boys behaved more riskily with dogs and were more frequently bitten. Older children reported greater risks with dogs and more bites. With demographics controlled, attitudes/beliefs of invulnerability, exposure frequency, and dog ownership predicted children’s self-reported risky practice with dogs. Attitudes/beliefs of invulnerability, dog exposure, and dog ownership predicted dog bites. In conclusion, both demographic and cognitive/behavioral factors influenced rural Chinese children’s dog-bite injury risk. Theory-based, empirically-supported intervention programs might reduce dog-bite injuries in rural China
    corecore