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ABSTRACT OF DISSERTATION 

 

 
 

ZINC DEFICIENCY AND MECHANISMS OF ENDOTHELIAL CELL 
DYSFUNCTION 

 

Atherosclerosis is a chronic inflammatory disease thought to be initiated by 
endothelial cell dysfunction.  Research described in this dissertation is focused on the role 
of zinc deficiency in endothelial cell activation with an emphasis on the function of the 
transcription factors nuclear factor-κB (NF-κB), peroxisome proliferator activated 
receptor (PPAR), and the aryl hydrocarbon receptor (AhR), which all play critical roles in 
the early pathology of atherosclerosis.  Cultured porcine aortic vascular endothelial cells 
were deprived of zinc by the zinc chelator TPEN and/or treated with the NF-κB inhibitor 
CAPE or the PPARγ agonist rosiglitazone, followed by measurements of 
PPARα expression, cellular oxidative stress, NF-κB and PPAR DNA binding, COX-2 
and E-selectin expression, and monocyte adhesion.   Cellular labile zinc deficiency 
increased oxidative stress and NF-κB DNA binding activity, and induced COX-2 and E-
selectin gene expression, as well as monocyte adhesion in endothelial cells.  CAPE 
significantly reduced the zinc deficiency-induced COX-2 expression, suggesting 
regulation through NF-κB signaling.  PPAR can inhibit NF-κB signaling.  Zinc 
deficiency down-regulated PPARα expression and PPAR DNA binding activity in 
endothelial cells.  Zinc deficiency compromised PPARγ transactivation activity in PPARγ 
and PPRE co-transfected rat aortic vascular smooth muscle cells.  Furthermore, 
rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during 
zinc deficiency.  Most of these effects of zinc deficiency could be reversed by zinc 
supplementation.  An in vivo study utilizing the atherogenic LDL-R-/- mouse model 
generally supported the importance of PPAR dysregulation during zinc deficiency.  LDL-
R-/- mice were maintained for four weeks on either zinc deficient or zinc adequate diets.  
Half of the mice within each zinc group were gavaged daily with rosiglitazone during the 
last stage of the study.  Selected inflammation and lipid parameters were measured.  The 
anti-inflammatory properties of rosiglitazone were compromised during zinc deficiency. 
Specifically, rosiglitazone induced inflammatory genes (MCP-1) in abdominal aorta only 
during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate 
pro-inflammatory markers such as iNOS in abdominal aorta of the mice.  Rosiglitazone 
significantly up-regulated liver IκBα protein expression only in zinc adequate mice.  



 

Plasma data also suggest an overall pro-inflammatory environment during zinc deficiency 
and support the concept that zinc is required for proper anti-inflammatory or protective 
functions of PPAR.  Zinc deficiency also altered PPAR-regulated lipid metabolism in 
LDL-R-/- mice.  Specifically, zinc deficiency increased plasma total cholesterol, and non-
HDL (VLDL, IDL and LDL)-cholesterol.  Plasma total fatty acids tended to be increased 
during zinc deficiency, and rosiglitazone treatment resulted in similar changes in fatty 
acid profile in zinc deficient mice.  FAT/CD36 expression in abdominal aorta was 
upregulated by rosiglitazone only in zinc-deficient mice.  In contrast, rosiglitazone 
treatment markedly increased LPL expression only in zinc-adequate mice.  These data 
suggest that in this atherogenic mouse model treated with rosiglitazone, lipid metabolism 
can be compromised during zinc deficiency.  AhR is another transcription factor involved 
in the development and homeostasis of the cardiovascular system.  Cultured porcine 
aortic endothelial cells were exposed to the AhR ligands PCB77 or beta-naphthoflavone 
(β-NF) alone or in combination with the zinc chelator TPEN, followed by measurements 
of the AhR responsive cytochrome P450 enzymes CYP1A1 and 1B1.  Zinc deficiency 
significantly reduced PCB77- induced CYP1A1 activity and mRNA expression, as well 
as PCB77 or β-NF-induced CYP1A1 protein expression, which could be restored by zinc 
supplementation. These data suggest that adequate zinc is required for the activation of 
the AhR-CYP1A1 pathway.  Impairment of the AhR pathway presents an additional 
mechanism by which zinc deficiency negatively affects transcription factor function and 
homeostasis of the vascular system.  Taken together, zinc nutrition can markedly 
modulate the pathogenesis of inflammatory diseases such as atherosclerosis.   
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Chaper 1.  Introduction 

 
1.1 Background 

1.1.1 Atherosclerosis/Inflammation 

Atherosclerosis, a progressive disease of large arteries,  is one of the most 

common underlying causes of death in western countries, accounting for about 50 % of 

all deaths [1, 2].  Atherosclerosis is a chronic inflammatory condition that results from 

interaction between modified lipoproteins, monocyte/macrophages, T lymphocytes, and 

the normal cellular components of the arterial wall such as endothelial cells, and smooth 

muscle cells.  This inflammatory process can lead to the development of complex lesions, 

or fibrous plaques, which protrude into the arterial lumen and narrow the vessel.  Plaque 

rupture results in the formation of thrombus and the subsequent acute clinical events of 

myocardial infarction and stroke [1, 2].  Atherosclerosis is associated with endothelial 

cell dysfunction and apoptosis [3].  The vascular endothelium, with its intercellular tight 

junctions, functions as a selectively permeable barrier between blood and tissues. It also 

plays important roles in the physiological and pathological processes of vessels via both 

sensory and executive functions. By generating effector molecules, the endothelium 

regulates vascular tone, inflammation, thrombosis, and vascular remodeling [2].  

Epidemiological studies have revealed multiple risk factors for atherosclerosis, including 

factors with a strong genetic component, and environmental factors, such as lifestyle and 

nutritional factors [1-3]. 

 

1.1.2 Zinc deficiency   

Zinc deficiency has been identified as a risk factor for  atherosclerosis [3, 4].  As a 

frequent condition in human populations, zinc deficiency affects about one third of the 

world’s population and contributes to 1.4 % of all deaths worldwide [3, 4]. Although 

acute zinc deficiency is rare nowadays in industrialized countries, marginal zinc 

deficiency is still relatively common [3].  Zinc deficiency can happen when zinc intake is 

inadequate or zinc is poorly absorbed, when zinc loss from the body is increased, or when 

the body’s requirement for zinc increases [4].  Some dietary factors, which are present 
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mainly in vegetable products, such as phytates (including inositol hexaphosphates and 

pentaphosphates), can strongly inhibit zinc absorption [5].  Certain disease states, like 

diabetes and alcoholism, can increase urinary loss of zinc and are thus responsible for the 

total body zinc decrease [4, 6].  Other physiological and pathological conditions, such as 

reproduction, rapid growth, and acute inflammation, all increase the organism’s demand 

for zinc and will lead to zinc deficiency if the demand is not fulfilled [4, 7].  Symptoms 

of zinc deficiency include growth retardation, delayed sexual maturation, immune 

dysfunction, delayed wound healing, diarrhea, dermatitis, pregnancy complications, 

behavioral abnormalities and eye lesions [4, 8]. 

 

1.1.3 Zinc physiology  

Zinc plays multiple important functions in biological systems.  As a component of 

biomembrane, zinc is distributed among the major membrane protein fractions and is 

critical for membrane structural integrity and stability [9, 10].   Membrane-bound zinc 

can regulate activities of membrane-bound enzymes, protect biomembrane against lipid 

peroxidation, and constitute a pool of rapidly available zinc [4, 9].  Zinc is also necessary 

for maintaining normal cytoskeletal structure [4].  Furthermore, zinc plays structural and 

catalytical roles in hundreds of enzymes and thousands of “zinc-finger” protein domains 

[11].  Zinc has antioxidant functions in that it 1) stabilizes macromolecules against 

radical-induced oxidation; 2) competes with pro-oxidant metals (iron and copper) for 

binding sites, thus decreasing their ability to form free radicals; 3) inhibits excess 

production of free radicals by biological systems; 4) is an essential part of the 

intracellular and extracellular antioxidant enzyme superoxide dismutase (SOD), and 5) 

induces the potent antioxidant metallothionein, which is an efficient hydroxyl radical 

scavenger [4, 11-13].  In addition, zinc-protein interactions have been found to regulate 

signal transduction [4, 11].  

Most intracellular zinc is bound to structural and/or regulatory proteins such as 

metallothionein, resulting in very low concentrations of metabolic active (labile) zinc, 

estimated at picomolar to nanomolar range [14].  Cellular zinc homeostasis is tightly 

regulated by the levels of zinc uptake, cellular storage, trafficking, and elimination [11, 
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14].  There are basically two categories of membrane zinc transporters involved in zinc 

uptake and elimination: Zip (Zrt- and Irt-like proteins (SLC39A)) and ZnT (solute-linked 

carrier 30 (SLC30A)).  Zip transporters mediate extracellular zinc uptake and 

intracellular vesicle zinc release into the cytoplasm, therefore increasing intracellular 

zinc, while ZnT transporters promote zinc efflux from cells to extracellular space or into 

intracellular vesicles, thereby lowering intracellular zinc [15, 16].  The mechanisms of 

Zip and ZnT mediated zinc transport are not well understood.  Zip-mediated zinc uptake 

could be a process of facilitated diffusion driven by a zinc concentration gradient.  ZnT 

transporters could function as secondary active transporters or antiporters since cellular 

extrusion of zinc and vesicular zinc deposition occur against a zinc concentration gradient 

[16].  Coordination of intracellular zinc storage and trafficking mainly depends on the 

cysteine-rich protein metallothionein.  Metallothionein is an intracellular transition metal 

binding protein that is critical for regulation of homeostasis of essential metals such as 

zinc and copper, and detoxification of heavy metals such as cadmium [17].  

Metallothioneins provide intracellular zinc binding sites with one metallothionein 

molecule capable of binding totally seven Zn2+ atoms, with the metal detoxification 

related α domain binding four Zn2+ atoms via 11 cysteines and the physiologically 

relevant β domain binding three Zn2+ atoms via 9 cysteines [16, 18].  Behaving as zinc 

chaperones, metallothioneins play a donor/acceptor role for zinc-binding motifs in 

metalloproteins, such as various metalloenzymes and transcription factors, thereby can 

activate or deactivate them [14, 16].  Furthermore, metallothioneins play an important 

role in protecting against cellular stressors, such as carbon-centered radicals, reactive 

oxygen species (ROS), and reactive nitrogen species (RNS) [16].  As free radical 

scavengers, metallothioneins can efficiently scavenge most types of ROS, including 

hydroxyl radical (•OH), superoxide (O2
• –), hydrogen peroxide (H2O2), peroxynitrite 

(ONOO–) and nitric oxide (NO) [19, 20].  Despite the high affinity of metallothionein for 

zinc, the metal can be released from and rebind to the protein, which is regulated by 

cellular redox state (the so called “metallothionein redox cycle”).  Specifically, oxidation 

of the thiolate cluster of metallothionein by various cellular oxidants can release zinc 

from metallothionein, forming metallothionein-disulfide, which in turn can be reduced by 

cellular reducing agents, such as glutathione, thereby restoring zinc binding to the protein 
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and reconstitute metallothionein.  In general, the thermodynamically stable zinc binding 

makes metallothionein an ideal intracellular zinc reservoir, and the redox regulation of 

zinc mobilization enables metallothionein to maintain cellular zinc homeostasis [17].  

 

1.1.4 Zinc and redox signaling 

The unique chemical nature of zinc determines its central position in the cellular 

redox signaling network.  Zinc by itself is redox inert but it can create a redox active 

environment when binding to a sulfur ligand. Oxidation of the sulfur ligand mobilizes 

zinc, while reduction of the oxidized ligand promotes zinc binding. Thus the reversible 

oxidation of the sulfur ligand is coupled to the reversible zinc release from the protein, 

providing redox control over zinc availability.  These cysteine-rich zinc binding proteins 

are thereby called “ redox zinc switches” that are controlled by concentrations of both 

oxidants and zinc [14, 18].  Some of these protein “redox zinc switches” are redox 

sensors, in which zinc release is coupled to protein conformational changes that affect 

enzymatic activity, molecular chaperone activity, and binding interactions, with no 

known function of the released zinc.  Other protein “redox zinc switches” are redox 

transducers, in which redox signals are converted to zinc signals via binding of  the 

released zinc to other proteins and modulating signal transduction, metabolic energy 

generation, mitochondrial function, and gene expression.  Metallothionein is one example 

of such redox transducers, which, together with its apoprotein, thionein, functions to 

control zinc availability, redistribute cellular zinc, and interconvert redox and zinc signals 

[18].  To maintain redox homeostasis, it is essential to keep tight control of zinc 

availability, because both inadequate and excessive cellular zinc will elicit oxidative 

stress [18]. 

Cellular labile zinc deficiency leads to a condition of oxidative stress [4].  A low 

zinc status alters the expression and activity of anti-oxidant enzymes and other 

components of the biological oxidant defense system.  In addition, zinc deficiency rapidly 

increases cellular global oxidants, including ROS and RNS, which will lead to tissue 

oxidative damage, increasing DNA, protein, and lipid oxidation.  The mechanisms of zinc 

deficiency-induced oxidative stress are not clear.  Possible mechanisms could be 1) 
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compromised roles of zinc as a physiological antioxidant, 2) impaired mitochondrial 

function that increases ROS formation, possibly by altered expression of certain 

respiratory chain components, and 3) altered expression and/or activity of ROS/RNS 

metabolizing enzymes [4].  On the other hand, excessive zinc that overwhelms the 

buffering capacity of the cellular zinc homeostasis system also induces oxidative stress 

by increasing mitochondrial ROS generation, etc. [18].  Therefore, zinc exhibits anti-

oxidant properties only in an intermediate range of physiological and possibly also 

pharmacological concentrations [18]. 

 

1.1.5 Zinc deficiency and cell signaling 

Zinc deficiency-induced oxidative stress affects cell signaling, including zinc 

finger transcription factors, such as peroxisome proliferator activated receptors (PPARs), 

and other oxidative stress sensitive transcription factors, such as activator protein-1 (AP-

1) and nuclear factor-κB (NF-κB) [4, 18].   Oxidative stress impairs the DNA-binding 

activity of zinc finger transcription factors by oxidizing the thiol groups in cysteine 

residues, which coordinate zinc in the reduced form, followed by alteration of the 

secondary structure of the transcription factor proteins.  In this way, oxidative stress can 

reduce transcription of genes regulated by zinc finger transcription factors [4].  The 

PPARs are ligand-activated transcription factors belonging to the steroid/thyroid 

hormone nuclear receptor superfamily [21, 22].  PPARs regulate the expression of genes 

involved in lipid and glucose homeostasis, inflammatory response, and cell 

differentiation [21, 23].  There are three isotypes of PPAR: PPARα, PPARβ/δ, and 

PPARγ [21].  Upon ligand binding, PPAR heterodimerizes with another nuclear receptor 

retinoid X receptor (RXR) and binds to peroxisome proliferators response elements 

(PPREs) located in the promoter regions of PPAR regulated genes and transactivates 

these genes [21, 23].  Since both PPAR and  RXR have two zinc fingers in their DNA 

binding domains [22, 24], zinc deficiency could impair the DNA binding and 

transactivation activities of the PPAR:RXR transcription factor complex.  There is 

evidence that zinc deficiency can compromise PPARα and γ signaling in vascular 

endothelial cells [25, 26].   
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Zinc deficiency-induced oxidative stress activates AP-1, mainly through 

activation of the stress-responsive mitogen-activated protein kinases (MAPKs) JNK and 

p38 [4].  The effect of zinc-deficiency on NF-κB activation is cell line specific. Earlier 

work in our lab has shown that zinc-deficiency can increase NF-κB DNA binding activity 

in porcine vascular endothelial cells compared to zinc-adequate cells [10].  Similar 

observations were obtained in mast cells and mononuclear cells as well [27, 28].  

However, in some other cell types, such as rat glioma C6 cells, human T-helper type-0 

(Th0) malignant lymphoblastoid HUT-78 cells, human neuroblastoma IMR-32 cells, and 

3T3 fibroblasts, zinc deficiency has been described to decrease NF-κB DNA binding 

activity [29-32].  Although the cytosolic events in NF-κB signaling, i.e., IκBα 

phosphorylation and subsequent ubiquitinization and degradation, are activated by 

increased oxidative stress in the zinc deficient cells, zinc deficiency-induced tubulin 

depolymerization impairs translocation of the activated NF-κB into the nucleus.  This can 

result in inhibition of transactivation of NF-κB regulated genes and thus may explain in 

part the inhibitory effects of zinc deficiency on NF-κB activation [4, 30].  The reason for 

the cell specific effects of zinc deficiency on NF-κB activity is not clear [3].  Since NF-

κB is the major transcription factor responsible for up-regulating pro-inflammatory 

genes, such as vascular adhesion molecules [33], it is necessary to investigate the 

influence of endothelial zinc status on the expression of adhesion molecules and other 

NF-κB target genes.  This type of study has not been reported so far and thereby becomes 

one focus of the current in vitro study utilizing vascular endothelial cells as the research 

model. 

 

1.1.6  PPAR/TZD 

PPARs have anti-inflammatory properties by negative cross-talk with major 

inflammatory pathways including NF-κB, AP-1, nuclear factor of activated T cells 

(NFAT), signal transducer and activator of transcription-1 (STAT-1), and 

CAAT/enhancer binding protein β (C/EBPβ) (Fig. 1.1) [21].  PPARα can repress NF-κB 

and AP-1 pathways via interactions with p65 subunit of NF-κB and c-Jun of AP-1, 

respectively [34].  Similarly, PPARγ can inhibit the NF-κB pathway by physically 
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interacting with p50 and p65 subunits of NF-κB [35].  PPARα agonists, such as fibrates, 

induce IκBα (an inhibitor of NF-κB) expression, providing an additional mechanism for 

the inhibition of NF-κB by PPARα and the anti-inflammatory properties of  PPARα 

agonists [36].  PPARγ agonists, such as troglitazone, a member of the thiazolidinedione 

(TZD) class, inhibit c-fos induction, which constitutes an additional mechanism for the 

inhibition of AP-1 by PPARγ [37].   

TZDs are synthetic PPARγ ligands that have been clinically used to treat type II 

diabetes [38-40].  In addition to their metabolic effects of improving insulin sensitivity 

and glycemic control, TZDs have direct anti-atherogenic effects of increasing NO 

bioavailability, inhibiting leukocyte/endothelial cell interaction, repressing vascular 

smooth muscle cell proliferation and migration, and promoting macrophage cholesterol 

efflux [39].  Animal studies have shown that TZDs can decrease blood pressure, repress 

left ventricular hypertrophy and atherosclerotic lesion development, and protect the 

myocardium from ischemia/reperfusion injury [38].  TZDs have also been shown to 

affect surrogate markers of vascular disease, such as dyslipidemia, hypertension, 

microalbuminuria, visceral fat, levels of adiponectin, C-reactive protein (CRP), 

plasminogen activator inhibitor type I (PAI-I), and matrix metalloproteinases (MMPs), 

carotid intima-media thickness, coronary stent restenosis, and delay progression of 

atherosclerosis in different patient groups, including type II diabetic patients [39, 40].  

The anti-atherogenic effects of TZDs can be due to their insulin-sensitizing anti-diabetic 

effects.  Because TZDs decrease insulin resistance, they may also improve other insulin 

resistance associated abnormalities, thereby decrease the morbidity and mortality of  

cardiovascular diseases [38, 40].  One the other hand, by modulating gene expression in a 

wide variety of cells, TZDs can also benefit the cardiovascular system by means 

independent of their anti-diabetic effects [38].  Despite the favorable effects of TZDs on 

cardiovascular surrogate markers, adverse effects of TZDs, including weight gain, fluid 

retention (edema), and the potential to exacerbate or precipitate heart failure can 

considerably limit the use of TZDs, especially in heart failure patients [41].  Recent 

clinical trails suggest that treatment with TZDs increased the risk for development of 

congestive heart failure in prediabetic and type II diabetic patients [41, 42].  The effects 

of TZDs on overall cardiovascular outcome still await better-designed future study.  The 
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effects of zinc nutritional status on the anti-inflammatory and anti-atherogenic properties 

of TZDs in an atherogenic animal model have not been studied.  These questions are of 

particular interest to us and led to the current in vivo study utilizing the atherosclerosis 

prone LDL-receptor deficient (LDL-R-/-) mouse model treated with the PPARγ specific 

agonist rosiglitazone. 

 

1.1.7 AhR/PCB 

The effect of endothelial zinc status on the aryl hydrocarbon receptor (AhR) 

pathway is another focus of the research presented in this dissertation.  AhR is a ligand-

activated transcription factor which belongs to the Per-ARNT-Sim (PAS) family of basic-

helix-loop-helix (bHLH) transcription factors [43].  AhR ligands include planar 

polycyclic and halogenated aromatic hydrocarbons, such as polychlorinated biphenyls 

(PCBs), and various classes of plant-derived chemicals [44, 45].  Prior to activation, AhR 

exists in the cytoplasm in association with heat shock protein (HSP)90, HSP90 accessory 

proteins, and immunophilin-like proteins such as XAP2/ARA9/AIP and p23 [45].  

Ligand binding to the AhR promotes its dissociation from this chaperone complex and 

exposure of  its nuclear localization signals, and its subsequent translocation to the 

nucleus where the ligand-activated AhR heterodimerizes with the aryl hydrocarbon 

nuclear translocator (ARNT) [46, 47].  The AhR:ARNT complexes then bind to the aryl 

hydrocarbon, xenobiotic, or dioxin response elements (AhREs, XREs, DREs) located in 

the promoter regions of target genes and transactivate the expression of a battery of genes 

involved in the metabolism (activation or detoxification) of endogenous and foreign 

compounds, oxidative stress response, cell cycle control, and apoptosis.  These AhR-

regulated genes are collectively called the AhR gene battery [44, 47, 48].  AhR-generated 

cellular oxidative stress responses can elicit metabolic events ranging from physiological 

to adaptive, and to toxicological processes.  The mechanisms involved include 1) 

induction of genes associated with inflammation, such as tumor necrosis factor α (TNFα) 

and cyclooxygenase-2 (COX-2); 2) regulation of prooxidant and antioxidant enzymes 

that generate or detoxify ROS, such as xanthine oxidase/xanthine dehydrogenase 

(XO/XDH) and SOD; and 3) induction of cytochrome P450 enzymes, such as the CYP1 
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family [44].  P450s catalyze the monooxygenation of various endogenous and exogenous 

compounds and normally reduce diatomic oxygen to water efficiently with little release 

of ROS.  However, when uncoupling of the P450-substrate complex with the NADPH-

P450 oxidoreductase and/or cytochrome b5 happens, the activated oxygen is released 

from the enzyme as either O2
• –, or H2O2, or other forms of ROS without substrate 

modification [44, 48, 49].  In addition to the well characterized roles of the AhR in 

inducing Phase I and Phase II metabolizing enzymes and mediating xenobiotic signaling 

[45, 50], the AhR has recently been shown to be involved in multiple molecular cascades 

leading to the modulation of cell proliferation, differentiation, and apoptosis, thereby 

playing important regulatory roles in the development and homeostasis of various organ 

systems including the cardiovascular system [45, 47, 51, 52].  Although the DNA binding 

activity of AhR does not seem to require zinc [53], zinc deficiency can inhibit the DNA 

binding activity of SP1 [53], a zinc figure transcription factor that cooperates with 

AhR:ARNT in regulating CYP1A1 gene expression [54].  Since zinc plays multiple roles 

in maintaining homeostasis of the cardiovasculature [55] and is also required for normal 

cardiovascular development [56],  it is intriguing to find out how zinc status could 

influence the AhR pathway.  Little is known on how zinc nutritional status could 

modulate certain AhR ligands, such as the toxic environmental contaminants 

polychlorinated biphenyls (PCBs), and thus modulate a biological outcome in the 

cardiovascular system. 

PCBs, a class of halogenated aromatic hydrocarbons with different numbers and 

positions of chlorine substitution on the biphenyl moiety, are widespread persistent 

organic environmental contaminants because of their chemical stability and previous 

extensive industrial use [57].  The use of PCBs has been banned in most countries since 

the late 1970s and the PCB levels in environmental samples are beginning to decline [57, 

58].  PCBs are resistant to degradation by metabolism.  Being lipophilic, they tend to 

bioaccumulate and biomagnify, and can be found at all levels of the food chain [57, 58]. 

PCBs have systemic toxicity in laboratory animals, wildlife species, and the human 

beings through activation of the AhR [59].  The major source of human exposure to PCBs 

is food [60].  The toxicological effects of PCBs on human health include endocrine 

disruption, immune dysfunction, defects in reproduction and neurological development, 
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as well as carcinogenesis [60].  PCBs can also contribute to the development of 

inflammatory diseases, such as atherosclerosis [61]. Coplanar PCBs, such as PCB 77, can 

cause endothelial cell dysfunction by disrupting endothelial barrier function, increasing 

cellular oxidative stress, activating NF-κB, and mediating production of the inflammatory 

cytokine IL-6.  As an AhR agonist, PCB 77 induces these inflammatory responses mostly 

via the AhR-CYP1A pathway [62]. 

 

In general, zinc has potent anti-inflammatory and anti-atherogenic properties.  As 

an anti-oxidant, zinc can prevent the oxidative modifications of LDL thereby inhibit one 

of the main mechanisms of atherosclerosis [63].  Zinc can also modulate the activity of 

lipase.  Zinc deficiency reduces the activity of lipoprotein lipase, which plays an 

important role in clearance of triglyceride-rich lipoproteins, and is correlated with 

increased serum triglycerides concentrations [64], which is a risk factor of atherosclerosis 

[65].  In addition, zinc participates in the regulation of blood pressure and in the 

pathogenesis of hypertension, and loss of zinc homeostasis can be the cause of high blood 

pressure. [66].  Zinc deficiency could thus constitute a risk factor for atherosclerosis by 

increasing LDL oxidation, elevating plasma triglycerides levels, and inducing 

hypertension [3, 4, 63].  Epidemiological studies have shown that low dietary zinc intake 

and low serum zinc levels are associated with an increased prevalence of coronary artery 

disease and its associated risk factors, such as hypertriglyceridemia and hypertension, in 

certain populations [67, 68].  Furthermore, significantly lower than control (normal aortas 

from subjects died in accidents or from causes other than atherosclerosis) concentrations 

of zinc were also found in atherosclerotic plaques of abdominal aorta in patients deceased 

with ischemic heart disease and acute myocardial infarction [69].  So far only a few 

molecular and cellular mechanisms have been proposed on how zinc deficiency could 

contribute to the pathogenesis of atherosclerosis, including activation of NF-κB and 

related inflammatory responses, activation of caspase-mediated apoptosis, and changes in 

NO signaling [3].  It is important to further explore the mechanisms involved in zinc 

deficiency induced pro-inflammatory events in endothelial cells and the vascular system 

as well, and to clarify how these events can contribute to the development of 

atherosclerosis.  The new findings described in this dissertation will add to the existing 
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knowledge of the micronutrient zinc and zinc-deficiency-related adverse effects on 

biological systems, especially the cardiovascular system, and will contribute to provide a 

scientific basis for the prevention of atherosclerosis by zinc nutritional intervention.  

 

 

1.2 General Hypothesis and Specific Aims 

The general hypothesis of the research described in this dissertation is that zinc 

deficiency can lead to endothelial cell inflammatory responses as well as pro-

inflammatory events in whole animal through modulation of the NF-κB, PPAR, and AhR 

signaling pathways.  To test this hypothesis, the following specific aims were proposed: 

Specific Aim 1:  To test the hypothesis that zinc deficiency induces endothelial 

cell inflammation by activating the NF-κB pathway and inhibiting the PPAR pathway. 

Specific Aim 2:  To test in vivo the hypotheses that zinc deficiency compromises 

proper PPARγ function and alters PPARγ-regulated inflammatory responses and lipid 

metabolism.  The LDL-R-/- mouse model was used to demonstrate the zinc-dependent 

anti-inflammatory properties and favorable lipid effects of rosiglitazone in early stages of 

atherosclerosis. 

Specific Aim 3:  To test the hypothesis that zinc deficiency can modulate PCB77-

induced endothelial cell inflammation. 
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Figure 1.1. The anti-inflammatory properties of PPARα and γ    

By interfering with the major inflammatory pathways, such as NF-κB, AP-1, NFAT, 

C/EBPβ, and STAT-1, PPARα and γ can inhibit the inflammatory responses.  NF-κB, 

nuclear factor-κB; AP-1, activator protein-1; NFAT, nuclear factor of activated T cells; 

C/EBPβ, CAAT/enhancer binding protein β; STAT-1, signal transducer and activator of 

transcription-1 (adapted from Blanquart C, J Steroid Biochem Mol Bio, 2003. 85: 267-

73). 

Copyright © Huiyun Shen 2008 
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Chaper 2.  Compromised Anti-inflammatory Responses and Intensified Pro-
inflammatory Responses in Vascular Endothelial Cells during Zn 
Deficiency 

 
2.1 Synopsis 

Zinc has anti-inflammatory properties and is crucial for the integrity of vascular 

endothelial cells.  We have shown that zinc deficiency can increase cellular oxidative 

stress and subsequently activate NF-κB.  Mechanisms of endothelial cell inflammation 

during zinc deficiency are not well defined.  The current study focuses on the hypothesis 

that during zinc deficiency, pro-inflammatory signaling pathways, such as NF-κB, are 

activated; meanwhile anti-inflammatory signaling pathways, such as PPAR, are 

compromised.  Porcine vascular endothelial cells were made zinc deficient by chelation 

with the membrane permeable zinc chelator TPEN.  Zinc deficiency increased oxidative 

stress and NF-κB DNA binding activity, and induced COX-2 and E-selectin gene 

expression, as well as monocyte adhesion in cultured endothelial cells.  These changes 

were reversed by zinc supplementation to the endothelial cell cultures.  The NF-κB 

inhibitor caffeic acid phenethyl ester (CAPE) significantly reduced the zinc deficiency-

induced COX-2 protein expression, suggesting regulation through NF-κB signaling.  

PPAR can inhibit NF-κB signaling.  Zinc deficiency down-regulated PPARα expression 

in cultured endothelial cells.  PPAR DNA binding activity was also compromised during 

zinc deficiency.  Furthermore, the PPARγ agonist rosiglitazone was unable to inhibit the 

adhesion of monocytes to endothelial cells during zinc deficiency, an event which could 

be reversed by zinc supplementation.  A transient transfection-luciferase assay confirmed 

that adequate zinc is required for rosiglitazone-induced PPARγ activation to transactivate 

target genes.  These data demonstrate the importance of zinc in proper PPAR function 

and the requirement of zinc to prevent inflammatory responses, suggesting that zinc 

deficiency might be involved in the pathogenesis of atherosclerosis. 
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2.2 Introduction 

The development of atherosclerosis is of multiple causes and involves the 

interaction of genetics, lifestyle, nutrition and other environmental risk factors [1].  

Atherosclerosis is believed to begin with endothelial cell activation or dysfunction, which 

is associated with a series of early changes that lead to fatty streak lesion formation. The 

changes include oxidative modifications of low density lipoprotein (LDL), up-regulation 

of endothelial adhesion molecules, recruitment of monocytes to the activated 

endothelium, accelerated migration of monocytes into the arterial wall, and 

differentiation of monocytes into macrophages; all events can lead to accelerated lesion 

progression and ultimately to plaque rupture and thrombosis [1]. There is evidence that 

zinc nutrition can modulate early phases of atherosclerosis [70]. 

As an essential trace element, zinc plays multiple roles in biological systems, 

including structural, catalytic, and regulatory functions [71, 72] .  Zinc is required for the 

maintenance of the normal structure of membrane and cytoskeleton [4].  Zinc also plays 

both catalytic and structural roles in hundreds of enzymes and thousands of “zinc finger” 

protein domains.  Through zinc/protein interactions, zinc also plays regulatory functions 

in cellular signaling, in the architecture of protein complexes, and in redox control [4, 

11].  Cellular zinc homeostasis is maintained largely by membrane zinc transporters and 

by the intracellular zinc storage and trafficking protein metallothionein [11, 15, 16]. 

There is evidence showing that zinc deficiency is related to the pathogenesis of 

atherosclerosis.  For example, low dietary zinc intake and low serum zinc levels were 

found to be associated with increased prevalence of coronary artery disease and its 

associated risk factors, such as hypertension and hypertriglyceridemia, in certain 

populations [67, 68].  In addition, lower concentrations of zinc were found in 

atherosclerotic plaques of abdominal aortas in deceased patients with ischemic heart 

disease and acute myocardial infarction compared with normal aortas [69].  The 

mechanisms of zinc deficiency in the development of atherosclerosis remain to be 

elucidated.  Zinc may play a critical role as a potent antioxidant and anti-inflammatory 

agent [10, 28].  For example, zinc deficiency increases cellular oxidative stress [10, 31], 

and in turn activates oxidative stress-sensitive transcription factors such as NF-κB and 

AP-1 in endothelial cells [10] and 3T3 cells [31], respectively.   
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Zinc has also been shown to modulate the function of PPARs [25, 26, 73].  

PPARs are ligand-activated transcription factors that heterodimerize with RXR and bind 

to PPRE to regulate expression of genes involved in lipid and glucose metabolism, 

inflammatory response, and cellular differentiation [21].  There are three PPAR isoforms, 

i.e. PPARα, PPARβ/δ, and PPARγ and they are expressed in all major cell types of 

atherosclerotic lesions [74].  PPARs possess anti-inflammatory properties by inhibiting 

major pro-inflammatory pathways, such as NF-κB and AP-1.  In this way, PPARs 

modulate the expression of adhesion molecules as well as cytokines/chemokines and their 

receptors, which in turn inhibits inflammatory responses [21].   Since the DNA binding 

domains of both PPAR and RXR have two zinc fingers [22, 24], zinc deficiency could 

impair the function of this transcription factor complex and thus lead to inflammation.  

The present study utilized the porcine vascular endothelial cell model to further 

investigate the effects of zinc deficiency on endothelial cell dysfunction with a focus on 

NF-κB and PPAR pathways.  In order to demonstrate the requirement of zinc for PPAR 

transactivation function, transient transfection-luciferase assays were performed in rat 

aortic vascular smooth muscle cells. We hypothesize that zinc deficiency, by activating 

NF-κB and inhibiting PPAR signaling, induces endothelial cell activation. 

 

 

2.3 Materials and Methods 

Cell culture and experimental media    

Endothelial cells were isolated from porcine pulmonary arteries and subcultured 

in Medium 199 (M-199) (Invitrogen Corporation, Carlsbad, CA) containing 10% (v/v) 

fetal bovine serum (FBS) (HyClone, Logan, UT) as previously described [75, 76].  The 

experimental media were composed of M-199 enriched with 1 % (v/v) FBS.  Zinc (20 

µM) was added as zinc acetate from a stock solution in water.  N, N, N', N'-Tetrakis (2-

pyridylmethyl) ethylene diamine (TPEN, 1.5 or 1.0 µM) was added from a stock solution 

in ethanol.  Caffeic acid phenethyl ester (CAPE, 1.0 μg/mL) and rosiglitazone (RSG, 10 

µM) were added from stock solutions in DMSO.  When 90 % confluent, the cells were 

synchronized with M-199 containing 0 % (v/v) FBS overnight and then treated with zinc 

and/or TPEN and/or CAPE and/or rosiglitazone for 24 h.   
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Measurement of cellular oxidative stress    

Oxidative stress was measured as previously described [77] with minor 

modifications.  Endothelial cells in 24-well plate were treated with vehicle control 

(ethanol, 0.05 %), TPEN (1.0 μM), TPEN (1.0 μM) plus Zn (20 μM), or Zn (20 μM) 

alone for 24 h, and washed twice with HEPES buffered salt solution (HBSS, pH 7.4) 

containing 25 mM HEPES, 120 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 25 mM 

NaHCO3, and 15 mM glucose. After an incubation with 10 μM of 2’,7’-

dichlorodihydrofluorescein diacetate (H2DCF-DA) for 30 minutes at 37°C in the dark, 

cells were washed  twice with HBSS and replaced with 1 ml of HBSS.  DCF fluorescence 

(relative fluorescence intensity) was measured using a SpectraMax® M2 microplate 

reader (Molecular Devices Corporation, Sunnyvale, CA) with excitation and emission 

wavelengths of 485 nm and 530 nm, respectively.  

 

Measurement of PPARα, cyclooxygenase-2 (COX-2) and endothelial cell selectin (E-

selectin) gene expression    

Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s directions.  cDNA was generated using the Reverse 

Transcription System (Promega, Madison, WI).  Gene expression of PPARα was 

determined by real-time PCR (RT-PCR) using the ABI Prism 7300 Real Time PCR 

System (Applied Biosystems, Branchburg, NJ) and SYBR® GREEN PCR Master Mix 

(Applied Biosystems, Branchburg, NJ).  The primers used were: PPARα, forward, 5’- 

CAT GCC TGT GAA GGT TGC AA -3’, and reverse, 5’- CAG CTC CGA TCA CAT 

TTG TCA T -3’;  β-actin, forward,  5’- TCA TCA CCA TCG GCA ACG -3’, and 

reverse, 5’-TTC CTG ATG TCC ACG TCG C -3’.  Gene expression of COX-2 and E-

selectin was determined by RT-PCR.  Specific primer sequences were synthesized by 

IDT Technologies, Inc, San Jose, CA.  The primers used were: COX-2, forward, 5'-  

GGA GAG ACA GCA TAA ACT GC -3', and reverse, 5'- GTG TGT TAA ACT CAG 

CAG CA -3’; E-selectin, forward, 5’-GAC TCG GGC AAG TGG AAT GAT GAG -3’, 

and reverse, 5’- CAT CAC CAT TCT GAG GAT GGC GGA C -3’; β-actin, forward,  5’-

GGG ACC TGA CCG ACT ACC TC-3’, and reverse, 5’-GGG CGA TGA TCT TGA 
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TCT TC-3’.  β-actin was used as an endogenous control for normalizing the expression of 

genes of interest. 

 

Measurement of PPARα and COX-2 protein expression   

Cellular protein was extracted as previously described [62].  Cellular protein 

extracts (25 μg) were electrophoresed on 8-10% SDS-polyacrylamide gels followed by 

transfer to nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA).  The 

membranes were incubated in blocking buffer [5% nonfat milk in tris-buffered saline (pH 

7.6) containing 0.05 % tween 20 (TBST)] for 1 hour followed by incubation with a 

1:1000 dilution of PPARα rabbit polyclonal IgG (Cayman Chemical Company, Ann 

Arbor, MI) or COX-2 goat polyclonal IgG (Santa Cruz Biotechnology, Santa Cruz, CA) 

or a 1:4000 dilution of β-actin rabbit polyclonal antibody (Sigma, St. Louis, MO) in 

blocking buffer overnight at 4°C.  β-actin was used as an endogenous control to 

normalize the expression of proteins of interest.  The membranes were then incubated 

with a goat anti-rabbit (Cell Signaling Technology, Inc., Danvers, MA) or mouse anti-

goat (Santa Cruz Biotechnology, Santa Cruz, CA) secondary antibody conjugated to 

horseradish peroxidase.  Signals of the blots were measured using the enhanced 

chemiluminescence (ECL) detection system (GE Healthcare, Piscataway, NJ). 

 

Monocyte Adhesion Assay    

The monocyte adhesion assay was performed with modifications as described 

previously [77].  Endothelial cells were treated with vehicle control (ethanol, 0.05 % and 

DMSO, 0.1 %), TPEN (1.0 μM), TPEN (1.0 μM) plus zinc (20 μM), zinc (20 μM) alone, 

rosiglitazone (10 μM) alone, rosiglitazone (10 μM) plus TPEN (1.0 μM), rosiglitazone 

(10 μM) plus TPEN (1.0 μM) and zinc (20 μM), or rosiglitazone (10 μM) plus zinc (20 

μM) for 24 h in 6-well plates.  Human THP-1 monocytes (50,000 cells/well) were 

activated with 10 ng/mL of TNFα for 10 min, then labeled with 3 μg/mL of the 

fluorescent probe calcein (Molecular Probes, Carlsbad, CA) by incubation at 37 °C for 15 

min.  After two times of washing with 1 % FBS/M199, THP-1 monocytes were 

resuspended in 1% FBS/M199, added to the treated endothelial cell monolayers (50 μL/ 
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well) and incubated at 37 °C for 30 min to allow for monocyte adhesion.  Nonadherent 

monocytes were washed away with 1% FBS/M199, and the monolayers were fixed with 

500 μL/well of 1% glutaraldehyde at room temperature for 30 minutes.  Attached 

fluorescent monocytes were counted using an Olympus IX70-S1F2 microscope 

(Olympus Optical Co., Ltd., Japan).  The monocyte adhesion assays were performed by 

Elizabeth Oesterling at the University of Kentucky Molecular and Cell Nutrition 

Laboratory (Hennig’s laboratory).  

 

Transcription factor (NF-κB and PPAR): DNA interaction studies: electrophoretic 

mobility shift assay (EMSA)   

Endothelial cells were treated with vehicle control (ethanol, 0.05 %), TPEN (1.0 

μM), TPEN (1.0 μM) plus Zn (20 μM), or Zn (20 μM) alone for 24 h.  Nuclear proteins 

were extracted as previously described [78].  EMSA assays were performed using 

LightShift® Chemiluminescent EMSA Kit (PIERCE, Rockford, IL).   Nuclear extracts 

were incubated for 25 min at room temperature with 5’-biotin-labeled oligonucleotide 

probes containing the specific DNA binding consensus sequences for NF-κB (Promega, 

Madison, WI) or  PPAR (Santa Cruz, Santa Cruz, CA).  Incubation was performed in the 

presence of nonspecific competitor DNA (Poly dI-dC). Following binding, the 

transcription factor complexed DNA and free probe in the mixture were resolved by 

electrophoresis in a 6.0 % (w/v) non-denaturing polyacrylamide gel followed by transfer 

to nylon membranes (Thermo Scientific, Rockford, IL), and visualized by 

autoradiography. Control reactions using supershift assay were performed to demonstrate 

the specificity of the shifted DNA-protein complexes for NF-κB and PPAR, respectively. 

Antibodies for NF-κB p65 and PPARα were obtained from Santa Cruz (Santa Cruz 

Biotechnology, Santa Cruz, CA) and Cayman (Cayman Chemical Company, Ann Arbor, 

MI), respectively.  

 

Transient transfection and luciferase assay   

Rat aortic vascular smooth muscle cells (RAVSMC) were grown in 6-well plates 

in DMEM (Invitrogen Corporation, Carlsbad, CA) containing 10 % FBS (Invitrogen 
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Corporation, Carlsbad, CA).  Media were changed to DMEM containing 2 % FBS 

without antibiotics, in which the cells were treated with 600 nM of the zinc chelator 

diethylenetriaminepentaacetic acid (DTPA) (Sigma-Aldrich, Saint Louis, MO) with or 

without 600 nM ZnSO4 for 24 h.   Subsequently, 400 ng DNA of the acyl-CoA oxidase 

PPRE-Tk-luciferase reporter construct and 200 ng of the full-length PPARγ1 expression 

vector were co-transfected using Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, 

CA) and OPTI-MEM®I (Invitrogen Corporation, Carlsbad, CA) [79].  After transfection 

for 6-8 h, cells were stimulated with 10 μmol/L of rosiglitazone for 24 h.  Luciferase 

activity was measured using a Dual-Luciferase Reporter Assay System (Promega, 

Madison, MA) according to the manufacturer's instructions. Transfection efficiency was 

adjusted by normalizing firefly luciferase activities to the renilla luciferase activities 

generated by co-transfection with 10 ng pGL4.74 [hRluc/TK] (Promega, Madison, MA).   

 

Statistical analysis    

Statistical analysis was performed with SPSS 12.0 (SPSS, Inc., Chicago, IL).  

Data were analyzed using one way ANOVA with post hoc comparisons of the means by 

least significance difference (LSD) procedure.  Differences were considered significant at 

P < 0.05.  Data are means ± standard error of the mean (SEM).   

 

 

2.4 Results 

Zinc deficiency increases cellular oxidative stress in vascular endothelial cells 

Zinc deficiency caused by TPEN markedly increased cellular oxidative stress (P < 

0.05, Fig. 2.1), which was reduced by zinc supplementation to the chelator-containing 

media (P < 0.05, Fig. 2.1).  Zinc supplementation alone caused a similar level of cellular 

oxidative stress to that in zinc supplemented TPEN treated cells (Fig. 2.1). 

 

Zinc deficiency increases NF-κB DNA binding activity in vascular endothelial cells 

Similar results were observed with NF-κB DNA binding activity (Fig. 2.2), which 

was markedly increased during zinc deficiency (P < 0.01, Fig. 2.2) and significantly 
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reduced during zinc supplementation (P < 0.01, Fig. 2.2).  Zinc supplementation alone 

did not affect NF-κB DNA binding activity (Fig. 2.2). 

 

Zinc deficiency induces gene expression of COX-2 and E-selectin in vascular 

endothelial cells 

To test the effect of zinc deficiency on pro-inflammatory genes down-stream of 

NF-κB, gene expression of COX-2 and E-selectin was assessed by RT-PCR analysis.  

Both COX-2 (Fig. 2.3A) and E-selectin (Fig. 2.3B) mRNAs were markedly up-regulated 

during zinc deficiency and restored to control levels following zinc supplementation (Fig. 

2.3).  Zinc supplementation alone had no effect on the expression of either COX-2 or E-

selectin mRNA (Fig. 2.3). 

 

Inhibition of NF-κB reduces the up-regulation of COX-2 protein by zinc deficiency in 

vascular endothelial cells    

Consistent with the COX-2 gene expression data, TPEN-induced zinc deficiency 

led to a significant increase in COX-2 protein level in endothelial cells (P < 0.001, Fig. 

2.4).  CAPE, a specific NF-κB inhibitor, at the concentration of 1.0 μg/mL, did not have 

any effect on COX-2 protein expression.  However, when cells were co-treated with 

TPEN and CAPE, the induction of COX-2 by TPEN was partially blocked (P < 0.001, 

Fig. 2.4), suggesting that NF-κB activation is involved in the induction of COX-2 protein 

by TPEN. 

  

Zinc deficiency decreases PPARα  mRNA and protein expression in vascular 

endothelial cells 

Zinc deficiency greatly decreased PPARα mRNA expression in vascular 

endothelial cells (P < 0.05, Fig. 2.5A), which was partially restored by zinc 

supplementation to TPEN-containing media (P < 0.05, Fig. 2.5A).  Zinc supplementation 

alone caused a similar level of PPARα mRNA expression to that in zinc supplemented 

TPEN treated cells (Fig. 2.5A).   Similar results were obtained with PPARα  protein 
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expression, which was also decreased by zinc chelation and restored by zinc 

supplementation (P < 0.05, Fig. 2.5B). 

 

Zinc deficiency decreases PPAR DNA binding activity in vascular endothelial cells 

Zinc deficiency significantly decreased PPAR DNA binding activity in vascular 

endothelial cells (P < 0.05, Fig. 2.6).  Zinc supplementation tended to restore the PPAR 

DNA binding activity to the control level (Fig. 2.6). 

 

Zinc deficiency increases monocyte adhesion to vascular endothelial cells and blocks 

the inhibitory effect of rosiglitazone on monocyte adhesion     

Zinc deficiency significantly increased monocyte adhesion to vascular endothelial 

cells (P < 0.001, Fig. 2.7).  Zinc supplementation ameliorated the monocyte adhesion 

observed during zinc deficiency.  Rosiglitazone was unable to block adhesion of 

monocytes to endothelial cells during zinc deficiency (P < 0.001); however, inhibition of 

monocyte adhesion by rosiglitazone was observed following zinc supplementation (Fig. 

2.7). 

 

Adequate zinc is required for functional activity of PPARγ 

 PPARγ transactivation activity in PPARγ and PPRE co-transfected RAVSMC 

was induced by rosiglitazone in zinc adequate cells (P < 0.001, Fig. 2.8).  Zinc deficiency 

caused by DPTA inhibited PPARγ transactivation activity induced by rosiglitazone (P < 

0.05, Fig. 2.8), which could be reversed by zinc supplementation (P < 0.05, Fig. 2.8). 

 

 

2.5 Discussion 

Evidence indicates that major chronic or age-related diseases, such as 

atherosclerosis, arthritis, dementia, osteoporosis, and cardiovascular diseases, are 

inflammation-related, and that a balance between NF-κB and PPAR signaling is a critical 

regulator of inflammation-related diseases [80].  Furthermore, zinc deficiency or a 

disturbance in zinc homeostasis in individuals genetically predisposed to a dysregulation 
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of the inflammatory and/or immune response may contribute to adverse effects associated 

with age-related diseases [81].  Zinc plays an important role in reactions related to cell-

mediated immunology and also functions as an antioxidant and anti-inflammatory 

nutrient [82].  The results from the studies described above suggest that zinc deficiency 

activates vascular endothelial cells through activation of NF-κB and inhibition of PPAR 

pathways.  

NF-κB is well known to be a key signaling pathway to up-regulate adhesion 

molecules [3], but the effect of endothelial cellular zinc status on adhesion molecule and 

other NF-κB regulated gene expression has rarely been reported.  The anti-inflammatory 

and anti-atherogenic roles of PPAR in endothelial cells have aroused interest only in 

recent years with the findings that adequate zinc is required for proper PPAR signaling  

in these cells [25, 26]. 

The present study looked at the influence of endothelial zinc status on adhesion 

molecule and other NF-κB regulated gene expression and further investigated the 

molecular mechanisms involved in zinc deficiency-induced endothelial cell activation.   

Oxidative stress is believed to play a fundamental role in the etiology of cardiovascular 

diseases, including atherosclerosis [83, 84]. The finding that zinc deficiency induced by 

TPEN chelation increased cellular oxidative stress is consistent with our previous finding 

that zinc deficiency induced by endothelial cell culture in low serum media for eight days 

can cause an increase in oxidative stress [10].  NF-κB is an oxidative stress sensitive 

transcription factor and critical in the regulation of an inflammatory response [85].  

Furthermore, activated NF-κB has been found in human atherosclerotic plaques [86], 

suggesting its importance in the etiology of atherosclerosis.  In the current study, zinc 

deficiency significantly increased NF-κB DNA binding activity. However, our previous 

studies using long term (8-10 day) culture of endothelial cells in low serum (zinc-

deficient) media  have shown that zinc deficiency by itself, without additional oxidative 

stress, does not increase [87] or only slightly increases NF-κB DNA binding [10].  The 

different observations of the effect of zinc deficiency on NF-κB DNA binding may be 

due to the different ways of making endothelial cells zinc-deficient, and possibly the 

extent of zinc deficiency as well.  Both COX-2 and E-selectin are NF-κB regulated genes 
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[88, 89].  COX-2 catalyzes production of the pro-inflammatory prostaglandin E2 (PGE2) 

and is highly induced and active at sites of inflammation [90].  E-selectin is an adhesion 

molecule expressed on the surface of activated vascular endothelial cells that mediates 

adhesion of neutrophils, monocytes, and memory T-cells to endothelial cells [89, 91].  In 

the current study, as a consequence of zinc deficiency-induced NF-κB activation, both 

COX-2 and E-selectin genes were significantly up-regulated, with the latter contributing 

to the observed increased adhesion of THP-1 monocytes to the activated endothelial cells.  

CAPE is a potent and specific inhibitor of NF-κB activation that acts by preventing the 

translocation of p65 subunit of NF-κB to the nucleus, thus inhibiting NF-κB DNA 

binding [92].  In our study, COX-2 protein expression induced during zinc deficiency 

was partially blocked by CAPE, again suggesting that NF-κB activation is involved in the 

up-regulation of inflammatory markers by zinc deficiency in vascular endothelial cells.   

PPARs, and especially PPARα and PPARγ, are inhibitors of NF-κB [21]; 

therefore dysfunctional PPAR signaling will lead to activation of NF-κB.  PPARα can 

repress the NF-κB pathway via interactions with the p65 subunit of NF-κB [34].  

Similarly, PPARγ can inhibit the NF-κB pathway by physically interacting with p50 and 

p65 subunits of NF-κB [35].  PPARα agonists, such as fibrates, induce IκBα (an 

inhibitor of NF-κB) expression, providing an additional mechanism for the inhibition of 

NF-κB by PPARα [36].  In the present study, PPARα expression at both the mRNA and 

protein levels was decreased due to zinc deficiency and this effect was reversible by zinc 

supplementation.  Similar effects of zinc deficiency and zinc supplementation were 

observed on PPARγ expression in vascular endothelial cells [25].  Furthermore, our 

previous study has shown that both PPARα and PPARγ agonists can induce PPAR DNA 

binding activity, which was compromised during zinc deficiency [26].  In this study, zinc 

deficiency consistently decreased PPAR DNA binding activity in endothelial cells.  The 

present transfection-luciferase assay demonstrated that zinc deficiency can inhibit 

rosiglitazone-induced PPARγ transactivation activity and that this effect can also be 

reversed by zinc supplementation.  As expected, compromised PPARγ function was 

observed in the current study during zinc deficiency.  This was reflected by the 

requirement of adequate zinc for rosiglitazone to inhibit monocyte-endothelial cell 
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adhesion.  Taken together, these findings clearly demonstrate that zinc deficiency 

compromises PPAR function.   

In conclusion, our present in vitro studies suggest that zinc deficiency intensifies 

pro-inflammatory and impairs anti-inflammatory responses in vascular endothelial cells 

though activation of NF-κB and inhibition of PPAR pathways.  Zinc adequacy therefore 

has important implications in preventing endothelial cell dysfunction and subsequent 

cardiovascular diseases such as atherosclerosis. 
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Figure 2.1. Zinc deficiency increases cellular oxidative stress in endothelial cells. 

Endothelial cells were exposed to vehicle control (ethanol, 0.05 %), TPEN (1.0 μM), 

TPEN (1.0 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h.  Oxidative stress was measured 

by DCF fluorescence (relative fluorescence units).    Values are means ± SEM, n = 4-6.  

Means without a common letter differ (a > b > c), P < 0.05.   
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Figure 2.2. Zinc deficiency increases NF-κB DNA binding activity in endothelial 

cells. 

Endothelial cells were exposed to vehicle control (ethanol, 0.05 %), TPEN (1.0 μM), 

TPEN (1.0 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h.  The vertical axis represents 

densitometric units.  Values are means ± SEM, n = 3.  Means without a common letter 

differ (a > b), P < 0.01.  The gel data are a representative of the typical outcome of three 

repeated EMSA experiments. 

 

 

NF-κB 



27 

A 

b

bb

a

0

50

100

150

200

250

300

350

400

450

Control TPEN TPEN + Zn Zn

C
O

X-
2 

m
R

N
A

 (%
 C

on
tro

l)

 
 
 

 

 

 

Figure 2.3. Zn deficiency induces COX-2 (A) and E-selectin (B) mRNA expression in 

endothelial cells. 

A. COX-2 mRNA expression measured by RT-PCR.  B. E-selectin mRNA expression 

measured by RT-PCR.  Endothelial cells were exposed to vehicle control (ethanol, 0.075 

%), TPEN (1.5 μM), TPEN (1.5 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h. The 

vertical axes represent ratios of the densitometric units of COX-2 or E-selectin mRNA 

over those of β-actin mRNA, respectively, expressed as percentage of control. Values are 

means ± SEM, n = 4.  Means without a common letter differ (a > b), P < 0.01(A) or 0.05 

(B).   The gel data are a representative of the typical outcome of four repeated RT-PCR 

experiments. 
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Figure 2.3 (Continued) 
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Figure 2.4. Zinc deficiency-induced COX-2 protein expression in endothelial cells is 

partially reduced during inhibition of NF-κB activation. 

Endothelial cells were exposed to vehicle control (ethanol, 0.05 % and DMSO, 0.04 %), 

TPEN (1.0 μM), CAPE (1.0 μg/mL), or TPEN (1.0 μM) plus CAPE (1.0 μg/mL) for 24 h.  

The values are ratios of the densitometric units of COX-2 over those of β-actin.  Values 

are means ± SEM, n = 3.  Means without a common letter differ (a > b > c), P < 0.001.  

The gel data are a representative of the typical outcome of three repeated Western Blot 

experiments.
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Figure 2.5. Zn deficiency decreases PPARα expression in endothelial cells. 

Endothelial cells were exposed to vehicle control (ethanol, 0.075 %), TPEN (1.5 μM), 

TPEN (1.5 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h.  A. PPARα mRNA expression 

measured by real-time PCR.  The vertical axis represents relative units, calculated as the 

ratio of the copy number of PPARα over the copy number of β-actin, the endogenous 

control.  Values are means ± SEM, n = 4.  Means without a common letter differ (a > b > 

c), P < 0.05.  B. PPARα protein expression measured by Western blot.  The values are 

ratios of the densitometric units of PPARα over those of β-actin, expressed as percentage 

of control.  Values are means ± SEM, n = 4.  Means without a common letter differ (a > 

b), P < 0.05.   The gel data are a representative of the typical outcome of four repeated 

Western Blot experiments.
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Figure 2.5 (Continued) 
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Figure 2.6. Zn deficiency decreases PPAR DNA binding activity in endothelial cells. 

Endothelial cells were exposed to vehicle control (ethanol, 0.05 %), TPEN (1.0 μM), 

TPEN (1.0 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h.  Values are means ± SEM, n = 

3.  Means without a common letter differ (a > b), P < 0.05.  The gel data are a 

representative of the typical outcome of three repeated EMSA experiments. 
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Figure 2.7. Zinc deficiency increases monocyte adhesion to endothelial cells and 

blocks the inhibitory effect of rosiglitazone on monocyte adhesion. 

Endothelial cells were exposed to vehicle control (ethanol, 0.05 % and DMSO, 0.1 %), 

TPEN (1.0 μM), TPEN (1.0 μM) plus Zn (20 μM), Zn (20 μM), rosiglitazone (RSG, 10 

μM), RSG (10 μM) plus TPEN (1.0 μM), RSG (10 μM) plus TPEN (1.0 μM) and Zn (20 

μM), or RSG (10 μM) plus Zn (20 μM) for 24 h followed by incubation with human 

THP-1 monocytes for 30 min.  Monocyte adhesion is expressed as numbers of monocyte 

adhered per microscopic high power field, with 5 ~ 7 fields examined per well.  Values 

are means ± SEM, n = 3.  Means without a common letter differ (a > b), P < 0.01. 
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Figure 2.8. Effect of zinc status on rosiglitazone-induced PPARγ transactivation in 

PPARγ and PPRE co-transfected RAVSMC. 

PPARγ transactivation activity was measured as relative luciferase activity (firefly 

luciferase activity: renilla luciferase activity).  Means without a common letter differ (a > 

b > c), P < 0.05.  Values are means ± SEM, n = 3.  The results represent the outcome of 

three repeated experiments. 
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Chaper 3.  Zinc Deficiency Alters Pro-inflammatory and Anti-inflammatory 
Responses in LDL-Receptor-Deficient Mice Treated with Rosiglitazone 

 
3.1 Synopsis 

Marginal intake of dietary zinc can be associated with increased risk of 

cardiovascular diseases. Zinc has potent antioxidant and anti-inflammatory properties.  

Zinc is also a structural and functional component of PPAR.  Numerous studies indicate 

that rosiglitazone, a selective and potent PPARγ agonist, has antioxidant and anti-

inflammatory effects and would be beneficial in inflammatory conditions, such as 

atherosclerosis.  The present study focused on the hypothesis that PPARγ signaling, and 

especially its anti-inflammatory properties, are dysfunctional during zinc-deficiency and 

that adequate dietary zinc is critical for anti-inflammatory properties of PPARγ agonists 

such as rosiglitazone.  LDL-R deficient (LDL-R-/-) mice were maintained for three weeks 

on low-fat (7g/100g) diets that were either zinc deficient or zinc adequate.  Subsequently, 

the low-fat regimen was switched to a high-fat (15g/100g) regimen for one week to 

induce a biological environment of mild oxidative and inflammatory stress.  Half of the 

mice within each zinc group were gavaged with rosiglitazone two days prior to the high 

fat feeding.  Subsequently, expression of selected pro-inflammatory genes was measured 

in abdominal aorta.  IκBα protein expression and DNA binding activities of NF-κB and 

PPAR in liver were also assayed.  Furthermore, concentrations of pro- and anti-

inflammatory cytokines/chemokines were determined in plasma.  Rosiglitazone induced 

inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was 

required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS.  In 

addition, rosiglitazone increased IκBα protein expression only in zinc adequate mice.  

Finally, plasma cytokine profiles suggest an overall pro-inflammatory environment 

during zinc deficiency and support the concept that zinc is required for proper anti-

inflammatory or protective functions of PPAR.  These data suggest that in this 

atherosclerotic mouse model the proper anti-inflammatory function of PPARγ was 

compromised during zinc deficiency and that adequate dietary zinc is critical for anti-

inflammatory properties of the PPARγ agonist rosiglitazone. 
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3.2 Introduction 

Atherosclerosis and its complications are the main causes of morbidity and 

mortality of coronary heart disease [2, 93].  Atherosclerosis is a chronic inflammatory 

disease that may progress over many decades and is characterized by the accumulation of 

lipids and fibrous elements in large arteries [2].  Atherosclerotic lesions are thought to be 

initiated by vascular endothelial cell dysfunction followed by monocyte adhesion, 

invasion and macrophage foam cell formation [1, 94].  Interaction between modified 

lipoproteins, macrophage foam cells, T cells, and the normal cellular elements of the 

arterial wall, such as smooth muscle cells [94], results in the formation and progression of 

atherosclerotic lesions [1].  In addition to genetic risk factors, such as high LDL and 

VLDL levels and low HDL levels, the development of atherosclerosis is greatly 

influenced by lifestyle as well as nutritional factors, such as zinc deficiency [1-3], which 

has been  suggested to be associated with coronary artery disease by epidemiological 

studies [67].  Several molecular and cellular mechanisms on how zinc deficiency could 

contribute to the pathogenesis of atherosclerosis have been found.  For example, zinc 

deficiency can enhance oxidative stress-related signaling in endothelial cells, including 

activation of NF-κB, which is a key transcription factor leading to adhesion molecule up-

regulation and inflammatory response, induction of caspase-mediated apoptosis of 

endothelial cells, which is also a characteristic of atherosclerosis, and changes in NO 

signaling, which is linked to the development of atherosclerosis [3].  The anti-atherogenic 

properties of zinc with a focus on endothelial cell metabolism have been previously 

reviewed [95].    

Zinc is an essential trace element required in biological systems for many 

physiological functions.  Zinc is recognized as a growth factor, membrane and 

cytoskeleton stabilizer, anti-inflammatory and antioxidant agent, and anti-apoptotic agent 

[4, 28, 70].  Zinc is a structural component of numerous zinc-finger proteins and plays 

functional roles in these proteins [4, 11].  PPAR is a ligand-activated transcription factor 

which has anti-inflammatory properties by interfering with major inflammatory pathways 

such as NF-κB and AP-1, and inhibiting inflammatory responses with decreased 

inflammatory cytokine and deactivated inflammatory mediators [21].  Since the DNA 

binding domains of PPAR and its DNA binding partner RXR both have two zinc fingers 
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[22, 24], zinc deficiency may affect proper function of the PPAR:RXR transcription 

factor complex and compromise the anti-inflammatory properties of PPAR.  

The synthetic PPARγ agonist, rosiglitazone, one member of thiazolidinediones 

(TZDs), is clinically used to treat type II diabetes [96].  In addition to its insulin-

sensitizing anti-diabetic effects [96],  rosiglitazone has potent anti-inflammatory and anti-

atherosclerotic properties [97, 98] and is able to inhibit the development of 

atherosclerosis in LDL-R-/- [99] and apolipoprotein E deficient (ApoE-/-) mice [100].  

Rosiglitazone has also been shown to attenuate vascular inflammation in both type II 

diabetic [101] and non-diabetic patients [102, 103].  Substantial experimental and clinical 

studies have provided evidence that chronic administration of TZDs, including 

rosiglitazone, is beneficial on cardiovascular system [38].  

Some in vitro studies using porcine vascular endothelial cells have shown that 

zinc can modulate PPAR function [25] and that adequate zinc is important for anti-

inflammatory properties of PPARα and γ [26].  The next question is whether the 

requirement of zinc for PPAR to exert its anti-inflammatory effect is also the case in vivo.  

To answer this question we carried out the current animal study utilizing an atherogenic 

mouse model (LDL-R-/- mice).  We hypothesize that rosiglitazone, by activating PPARγ, 

is able to decrease high-fat diet induced inflammatory responses in LDL-R-/- mice, and 

that this protective effect of rosiglitazone is dependent on adequate zinc intake.   

 

 

3.3 Materials and Methods 

Animals and diets    

The atherosclerosis-prone animal model used in this study was the homozygous 

LDL-R null strain of mouse with a C57BL6/J Background. These mice develop marked 

hypercholesterolemia and early to intermediate atherosclerotic lesions after 6 to 8 weeks 

on a high-fat, high-cholesterol diet [104].  The mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME; Stock Number: 002207) and housed 4 per cage in plastic 

cages with wire mesh floors over wood chip bedding.  Cellulose pads were provided to 

the mice for nesting and a 12 h light/dark cycle was maintained.  Mice were given ad 
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libitum access to distilled water provided through plastic bottles with plastic stoppers to 

reduce zinc contamination.  All procedures were in compliance with and approved by the 

Iowa State University Animal Care and Use Committee.  LDL-R-/- mice were obtained at 

5 wk of age, weighed 16.3 g on average, and were fed a low-fat (LF) diet with either 0.4 

mg/kg of zinc (0 Zn, zinc-deficient diet) or 33.1 mg/kg of zinc (30 Zn, zinc-adequate 

diet).  After 21 d of feeding the LF diet, all mice were assigned to a high-fat (HF) diet, 

without changing the original zinc nutritional status.  Mice were fed the HF diet for one 

week.  Diets were prepared based on AIN-93 standards [105] but used egg white rather 

than casein as the protein source in order to provide a low zinc diet [106] (Table 3.1). The 

diets were of similar caloric value, 18.17 kJ/g for the HF and 16.50 kJ/g for the LF diets, 

respectively.  Rosiglitazone (RSG, 20 mg ∙ kg-1 ∙ d-1) [99] or the vehicle (0.25% of 

methylcellulose) were administered for 9 d by oral gavage.  RSG treatment was initiated 

2 d prior to the start of the HF dietary regimen.  Body weights of all mice were 

determined every 2 d throughout the study.  After completion of the study (4 wk), the 

mice were euthanized by intraperitoneal phenobarbital injection (Fig. 3.1).   

 Food intake was measured over a 3 day period within the first week of the study.  

Mean food intake was not statistically different in zinc deficient vs. zinc adequate mice at 

this time.  In a preliminary study we observed that mice fed the zinc-deficient diet cycle 

their food intake between 100 % and 75 % of that of the zinc-adequate animals during 

this time period with a net overall decrease of about 16% of food intake in zinc-deficient 

mice.   

 

Zinc quantification    

Blood was drawn from exposed hearts using heparinized syringes.  Plasma 

samples were prepared by centrifugation at 14,000 × g at room temperature for 10 min.  

Livers were flash frozen in liquid nitrogen after excision.  Both plasma and liver samples 

were stored at -80° C prior to analysis.  Zinc concentrations in plasma, liver and RSG 

solution were analyzed by inductively coupled plasma (ICP) mass spectrometry by Dr. 

Thomas Mawhinney at the University of Missouri-Columbia Agricultural Experiment 

Station Chemical Laboratory (Columbia, MO) [107]. 
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Measurement of plasma cytokines and chemokines   

Concentrations of plasma IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-17, 

TNFα,  and MCP-1 were measured using Mouse Cytokine/Chemokine LINCOplex kit 

(LINKO Research Inc., St. Louis, MO).   Luminex 100 (Luminex Corporation, Austin, 

TX) and Multiplex Data Analysis Software 1.0 (Upstate USA, Inc., Chicago, IL) were 

utilized for signal detection and data analysis, respectively, by Jason Stevens at the 

University of Kentucky Center for Oral Health Research. 

 

Gene expression analysis   

Abdominal aortas were excised from the mice, immerged  in RNAlater (Qiagen, 

Valencia, CA) and stored at -80° C until analysis.  Total RNA was isolated from 

abdominal aorta using RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia, CA) after 

surrounding adipose and connective tissues were removed.  cDNA was generated using 

the Reverse Transcription System (Promega, Madison, WI).  Gene expression was 

determined by real-time PCR using the ABI Prism 7300 Real Time PCR System 

(Applied Biosystems, Branchburg, NJ) and TaqMan® Universal PCR Master Mix, No 

AmpErase® UNG (Applied Biosystems, Branchburg, NJ).  TaqMan® gene expression 

assays were used for mouse iNOS and MCP-1 (Applied Biosystems, Branchburg, NJ).  

Each assay consisted of a specific pair of unlabeled PCR primers and a specific 

TaqMan® MGB probe that was 5’ end labeled with a FAMTM reporter dye and 3’ end 

labeled with a minor groove binder/non-fluorescent quencher (MGBNFQ).  Detection of 

18S rRNA, or β-actin as endogenous control, utilized pre-developed Taqman assay 

reagents, i.e. Eukaryotic 18S rRNA Endogenous Control or Mouse ACTB Endogenous 

Control (Applied Biosystems, Branchburg, NJ). 

 

Measurement of IκBα protein expression    

Liver tissues were flash frozen and stored at -80 °C until analysis.  Frozen tissue 

was cut on ice into approximately 2 mm3 pieces with scalpel and submerged into ice cold 

lysis buffer containing 50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2 mM 

DTT, 1 mM Na3VO4, 0.1 mg/mL phenylmethanesulfonyl fluoride (PMSF), 2.5 μg/mL 
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leupeptin, 10 μg/mL pepstatin A, 10 μg/mL aprotinin, 0.5 % nonidet P-40, and 0.5 % 

Triton X-100.  The liver tissue was homogenized on ice for 10 min and the homogenate 

was kept on ice for another 30 min followed by centrifugation at 14,000 rpm at 4 °C for 

30 min.  Cellular protein extract was obtained by collecting the supernatant.  25 μg of 

cellular protein extracts were electrophoresed on 8 % SDS-polyacrylamide gels followed 

by transfer to nitrocellulose membranes. The membranes were blocked with blocking 

buffer [5% nonfat milk in tris-buffered saline (pH 7.6) containing 0.05 % tween 20 

(TBST)] for 1 h followed by incubation with a 1:1000 dilution of rabbit anti-IκBα, C-

terminal polyclonal antibody (Millipore,  Billerica, MA) or a 1:4000 dilution of rabbit 

anti-actin polyclonal antibody (Sigma, St. Louis, MO) in blocking buffer overnight at 

4°C.  β-actin was used as an endogenous control to normalize the expression of IκBα. 

The membranes were then incubated with a goat anti-rabbit secondary antibody 

conjugated to horseradish peroxidase (Cell Signaling Technology, Inc., Danvers, MA).  

Signals of the blots were measured using the enhanced chemiluminescence (ECL) 

detection system (GE Healthcare, Piscataway, NJ). 

 

Transcription factor (NF-κB and PPAR):DNA interaction studies: electrophoretic 

mobility shift assay (EMSA)   

Liver tissues were flash frozen and stored at -80 °C until analysis. Nuclear 

proteins were extracted using CelLyticTM NuCLEARTM Extraction Kit (Sigma-Aldrich, 

St. Louis, MO) according to the manufacturer’s instruction.  EMSA assays were 

performed using LightShift® Chemiluminescent EMSA Kit (PIERCE, Rockford, IL).   

Nuclear extracts were incubated for 25 min at room temperature with 5’-biotin-labeled 

oligonucleotide probes containing the specific DNA binding consensus sequences for 

NF-κB (Promega, Madison, WI) or  PPAR (Santa Cruz, Santa Cruz, CA). Incubation was 

performed in the presence of nonspecific competitor DNA (Poly dI-dC). Following 

binding, the transcription factor complexed DNA and free probe in the mixture were 

separated by electrophoresis in a 6.0 % (w/v) non-denaturing polyacrylamide gel 

followed by transfer to nylon membranes (Thermo Scientific, Rockford, IL), and 

visualized by autoradiography. Control reactions using supershift assay were performed 
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to demonstrate the specificity of the shifted DNA-protein complexes for NF-κB and 

PPAR, respectively. Antibodies for NF-κB p65 and PPARα were obtained from Santa 

Cruz (Santa Cruz Biotechnology, Santa Cruz, CA) and Cayman (Cayman Chemical 

Company, Ann Arbor, MI), respectively.  

 

Statistical analyses    

Data were expressed as means ± SEM and analyzed using SPSS 12.0 (SPSS, Inc., 

Chicago, IL) and JMP 7.0 (SAS, Inc., Cary, NC).  Zinc and RSG were used as 

explanatory variables in two-way ANOVA models.  Non significant interactions were 

removed from the models.  Post hoc comparisons were conducted using LSD method 

only when there were significant interactions in the two-way model.  A statistical 

probability of P < 0.05 was considered significant.  Actual P values were reported when 

less than 0.1. 

 

 

3.4 Results 

Body weight was unchanged until day 9, but subsequently only increased in zinc-

adequate mice (Fig. 3.2).  Rosiglitazone treatment had no effect on body weight within 

either zinc adequate or deficient groups, respectively (Fig. 3.2).  Body weights in each 

group at the end of the feeding study were (mean ± SEM): 0 Zn, 16.43 ± 1.20 g; 0 Zn + 

RSG, 15.12 ± 0.52 g; 30 Zn, 19.56 ± 0.26 g; 30 Zn + RSG, 19.29 ± 0.48 g.   

Plasma zinc concentrations were not different in the LDL-R-/- mice fed the zinc-

deficient diet compared to the zinc-adequate diet regardless of rosiglitazone treatment 

(Fig. 3.3).  Treatment with rosiglitazone resulted in increased plasma zinc concentrations 

in both dietary groups (P < 0.001, Fig. 3.3).  Liver zinc concentration was lower in 

untreated mice fed the zinc-deficient diet compared to the zinc-adequate diet (P < 0.001, 

Fig. 3.3).  In mice fed the zinc-adequate diet only, rosiglitazone treatment resulted in 

reduced liver zinc concentration (P < 0.01, Fig. 3.3). 
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The effects of rosiglitazone on expression of pro-inflammatory genes in LDL-R-/- mice 

are regulated by zinc status  

Rosiglitazone treatment resulted in lower levels of iNOS mRNA expression in 

abdominal aortas compared with untreated mice (P < 0.01, Fig. 3.4A). The zinc adequate 

untreated mice had a higher level of iNOS mRNA expression in abdominal aorta than the 

zinc deficient untreated mice (P < 0.05, Fig. 3.4A).  Rosiglitazone treatment significantly 

reduced iNOS mRNA expression in abdominal aorta only in zinc adequate mice (P < 

0.05, Fig. 3.4A) but not in zinc deficient mice.   

Zinc deficiency alone did not increase MCP-1 mRNA expression (Fig. 3.4B).  

Rosiglitazone treatment had a significant interaction with zinc status by tending to 

increase MCP-1 mRNA expression in zinc deficient mice and decrease MCP-1 mRNA 

expression in zinc adequate mice (P < 0.05, Fig. 3.4B).  During zinc deficiency, 

rosiglitazone treatment significantly up-regulated MCP-1 mRNA in abdominal aorta 

compared to rosiglitazone treated zinc adequate mice (P < 0.05, Fig. 3.4B). 

 

The effects of rosiglitazone on IκBα protein expression in LDL-R-/- mice are regulated 

by zinc status  

The zinc deficient LDL-R-/- mice had lower levels of liver IκBα protein 

expression than the zinc adequate mice (P < 0.01, Fig. 3.5). Regulation of liver IκBα 

protein expression was affected by both treatments with rosiglitazone and zinc, and the 

treatment interaction was statistically significant.  Specifically, IκBα protein expression 

in liver of LDL-R-/- mice was up-regulated by rosiglitazone in zinc adequate mice but not 

in zinc deficient mice (P < 0.05, Fig. 3.5). 

 

Zinc deficiency and rosiglitazone increase PPAR DNA binding activity in LDL-R-/- 

mice 

NF-κB DNA binding activity in LDL-R-/- mice liver was unaffected by either zinc 

intake or rosiglitazone treatment (Fig. 3.6A).  However, rosiglitazone tended to increase 

NF-κB DNA binding activity during zinc deficiency and decrease it during zinc adequacy 

(Fig. 3.6A).  Zinc deficiency resulted in higher PPAR DNA binding activity in mice liver 
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(P < 0.05, Fig. 3.6B).  Rosiglitazone treatment also increased PPAR DNA binding 

activity in mice liver (P < 0.05, Fig. 3.6B). 

 

The effects of rosiglitazone on concentrations of plasma anti- and pro-inflammatory 

cytokines in LDL-R-/- mice are regulated by zinc status  

Zinc deficiency resulted in lower plasma IL-10 concentrations in LDL-R-/- mice 

(P < 0.01, Table 3.2).  Although statistically not significant, treatment with rosiglitazone 

tended to increase circulating anti-inflammatory cytokine (IL-4, IL-10, IL-13) 

concentrations during zinc adequacy and tended to decrease them during zinc deficiency 

(Table 3.2). 

Zinc deficiency resulted in lower plasma IL-1α concentrations (P < 0.001, Table 

3.3) and higher plasma IL-6 concentrations (P < 0.05, Table 3.3) in LDL-R-/- mice.  

Rosiglitazone tended to further increase IL-6 concentrations in zinc deficient mice and 

slightly decrease them in zinc adequate mice (P = 0.095, Table 3.3).  Zinc and 

rosiglitazone had a significant interaction in affecting plasma IL-12 concentrations (P < 

0.01, Table 3.3). Specifically, rosiglitazone treatment decreased plasma IL-12 

concentrations during zinc adequacy (P < 0.01, Table 3.3),   but tended to increase IL-12 

concentrations during zinc deficiency (Table 3.3).  

 

 

3.5 Discussion 

This study was designed to investigate the interaction of a modest zinc depletion 

and dietary fat intake on the response to rosiglitazone in mice lacking LDL-R.  To our 

knowledge, this is the first study to investigate the effect of rosiglitazone and dietary zinc 

depletion in this strain of mice. 

Growth retardation is well known to be one of the major symptoms of zinc 

deficiency in the human being [4].  In the current study, the mice were on either a zinc-

deficient or a zinc-adequate diet in powder form.  Apparently it took some time for the 

mice to adjust themselves to the powder-formed experimental diets, which could explain 

why the body weight was generally not changed until day 9.  After that, only mice on the 
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zinc-adequate diet gained weight, contrasting the almost unchanged body weight of the 

zinc-deficient mice.   

Based on our preliminary study with LDL-R normal mice and the short duration 

of the study, we did not expect plasma zinc concentrations to be significantly affected.  

And in fact, plasma zinc levels were not different between mice fed the zinc depleted 

compared to the zinc adequate diets regardless of rosiglitazone treatment.  However, 

within the dietary zinc groups (0 zinc or 30 zinc) rosiglitazone treatment increased 

plasma zinc levels.  We verified that the rosiglitazone solution was zinc-free, therefore 

this repartitioning of plasma zinc by rosiglitazone appears to be a specific effect of the 

drug.  Liver zinc concentration is considered to be more responsive to dietary zinc intake 

than plasma zinc [108] and indeed we observed lower liver zinc concentrations in mice 

fed the low compared to the adequate zinc diet.  However, with rosiglitazone treatment 

liver zinc was reduced only in the mice fed the zinc adequate diet.  The observation that 

rosiglitazone increased plasma zinc in both dietary groups suggests that other body zinc 

stores besides liver may be mobilized by rosiglitazone, and this observation is worthy of 

further study.  

The present in vivo study generally supports the in vitro finding of PPAR 

dysregulation during zinc deficiency.  For example, rosiglitazone treatment significantly 

down-regulated iNOS gene expression in abdominal aorta only in zinc adequate mice, 

indicating that only under zinc adequate condition is PPARγ functioning properly to 

inhibit NF-κB activity.  The pro-inflammatory gene iNOS is regulated by NF-κB [88].  

During inflammation, smooth muscle cells and macrophages express iNOS thus causing 

an increase in NO generation. NO can react with O2
• – to produce the strong oxidant 

ONOO–, which in turn can increase lipid peroxidation, protein nitration, and LDL 

oxidation, contributing to the pathogenesis of atherosclerosis [83].  Interestingly, in the 

current study, the zinc adequate mice had unexpected higher basal levels of iNOS mRNA 

expression in abdominal aorta, which could be due to the high-fat feeding.  In our 

preliminary work using the same mouse model with low-fat diet feeding, iNOS mRNA 

expression in abdominal aorta were higher in the zinc-deficient mice than in the zinc-

adequate mice (see Appendix, Fig. I).  In the present study, MCP-1 mRNA expression 

was also observed to be higher in rosiglitazone treated zinc deficient mice than in 



45 

rosiglitazone treated zinc adequate mice.  This “adverse” effect of rosiglitazone during 

zinc deficiency again suggests that proper anti-inflammatory properties of PPARγ are 

compromised during zinc deficiency.  MCP-1 is a potent chemoattractant for monocytes 

and plays an important role in monocyte recruitment and endothelium activation. The 

expression of  MCP-1 by endothelial cells is NF-κB regulated [109]. 

Both zinc and metallothioneins (MT) can protect cells against redox stress [110]. 

MT are intracellular cysteine-rich transition metal binding proteins critical in maintaining 

cellular zinc homeostasis [17].  MT have zinc-buffering and anti-oxidant properties [17, 

18, 110] and might prevent diabetic cardiovascular complications [111].  In the current in 

vivo study, zinc deficiency tended to down-regulate liver MT1 mRNA expression 

compared to zinc adequate mice (see Appendix, Fig. II).  Furthermore, rosiglitazone 

significantly up-regulated liver MT1 mRNA expression in mice regardless of the zinc 

status (see Appendix, Fig. II), suggesting that the anti-inflammatory and anti-atherogenic 

properties of rosiglitazone could be in part due to its induction of MT.   

Another critical element in the etiology of atherosclerosis is via regulation by 

cytokines [112].  There are basically two categories of cytokines, i.e. pro-inflammatory 

cytokines, which promote inflammation, such as IL-1, TNF, and IL-6; and anti-

inflammatory cytokines, which inhibit the activity of pro-inflammatory cytokines, such as 

IL-4, IL-10, and IL-13 [113, 114].  Epidemiological studies have shown that plasma IL-6 

level is a potent independent predictor of risk of future cardiovascular events [93].  IL-6 

exhibits its main inflammatory properties in the acute phase response by promoting the 

production of a variety of hepatic acute phase proteins [93, 115].  Elevated levels of  IL-6 

also have been found in both human and mice atherosclerotic lesions and can act in a pro-

inflammatory and pro-coagulant way, thus contributing to lesion progression and 

thrombotic complications [93].  On the other hand, IL-10 is an important anti-

inflammatory cytokine which inhibits the production of pro-inflammatory 

monocyte/macrophage and neutrophil cytokines, and pro-atherogenic T-helper 1 (Th1) 

lymphocyte cytokines [114, 116].  By deactivating pro-inflammatory cytokines and 

iNOS, IL-10 has anti-inflammatory properties on cardiovascular tissues [117]. In the 

present study, zinc deficiency significantly elevated the pro-inflammatory IL-6 and 

decreased the anti-inflammatory IL-10 levels in plasma.  IL-12 is an immunoregulatory 
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cytokine that favors Th1 cell phenotype and induces Th1 cytokines, such as INFγ and IL-

2.   By regulating cell mediated immunity and activating macrophages, the Th1 cytokines 

contribute to the development of atherosclerosis [114, 116].  In the current study, 

rosiglitazone had a significant interaction with zinc status to regulate plasma IL-12 levels 

by decreasing it during zinc adequacy and increasing it during zinc deficiency, which 

indicates that the proper anti-inflammatory effect of the PPARγ agonist rosiglitazone 

requires zinc.   

An earlier research in our lab utilizing the same mouse model (i.e. LDL-R-/- mice) 

has revealed that zinc deficiency can increase pro-atherosclerotic markers, such as NF-κB 

DNA binding and vascular cell adhesion molecule-1 (VCAM-1) expression, and  

decrease PPARγ DNA binding in these animals [118].  In the current study, the 

expression of IκBα protein in liver tissue was elevated by rosiglitazone only in zinc 

adequate mice but not in zinc deficient mice, suggesting that rosiglitazone exerts its anti-

inflammatory effect by up-regulating IκBα only during zinc adequacy.  IκBα is a natural 

inhibitor of NF-κB.  By interacting with and shielding the nuclear localization signal of 

NF-κB, IκBα prevents the translocation of NF-κB to the nucleus and its DNA binding 

[119, 120].  IκBα is also able to dissociate prebound NF-κB from its cognate DNA 

binding sites [119].  In the current study, NF-κB DNA binding activity in liver tissue was 

not significantly affected by either zinc status or rosiglitazone.  However, rosiglitazone 

tended to decrease NF-κB DNA binding during zinc adequacy, a trend that was reversed 

during zinc deficiency.  The NF-κB DNA binding activity data seem to be consistent 

with the IκBα protein expression data.  Together they can partially explain the observed 

iNOS and MCP-1 gene expression patterns in these LDL-R-/- mice.  In the present study, 

interestingly, both PPARγ mRNA expression in abdominal aorta (see Appendix, Fig. III) 

and PPAR DNA binding activity in liver were higher in zinc deficient mice, suggesting a 

compensatory process in these mice, i.e. up-regulation of the anti-inflammatory 

transcription factor PPAR and its DNA binding activity against decreased PPAR 

signaling.  A similar phenomenon of increased PPARγ mRNA level in thoracic aorta 

during zinc deficiency was observed earlier in a study using the same mouse model 

[118].  Taken together, these in vivo studies suggest that adequate zinc is crucial in 
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providing an overall anti-inflammatory environment by inhibiting NF-κB and by 

activating protective PPAR signaling. 

In conclusion, our present in vivo study suggests that zinc deficiency intensifies 

pro-inflammatory and impairs anti-inflammatory events in the atherogenic LDL-R-/- 

mouse model by activating NF-κB pathway and compromising PPAR function.  The in 

vivo data are generally in accordance with the in vitro findings made in endothelial cells 

as has been described in Chapter Two (Fig. 3.7).  Adequate dietary zinc intake is 

therefore recommended in patients treated with rosiglitazone to ameliorate inflammatory 

and atherosclerotic events.  
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Table 3.1. Experimental diets 1 

 
   Ingredient LF / 0 Zn HF / 0 Zn LF /30 Zn HF /30 Zn 

 g/kg 

   Egg white 200 200 200 200 

   DL-Methionine 3 3 3 3 

   Choline bitartrate 2.5 2.5 2.5 2.5 

   Corn starch 397.5 397.5 397.5 397.5 

   Sucrose 100 100 100 100 

   Dyetrose 131 51 121 41 

   Cellulose 35 35 35 35 

   Corn oil 50 130 50 130 

   Safflower oil 20 20 20 20 

   Mineral Mix2 50 50 50 50 

   Zinc Mix3,4 0 0 10 10 

   Vitamin Mix AIN-93 10 10 10 10 

   Biotin mix5 1 1 1 1 
 

1 Diet ingredients were purchased from MP Biomedicals, Salon, OH except for dyetrose which 

was purchased from Dyets Inc., Bethlehem, PA, and corn starch, sucrose, and corn oil which 

were purchased from a local food supply warehouse.   
2 A mineral mix was prepared using elemental compounds in cornstarch to provide a zinc 

depleted mixture [105, 106].  
3 Zinc carbonate was mixed with dyetrose and added to provide the desired final concentrations in 

the diets.  
4 Actual zinc concentrations of the zinc-deficient and zinc-adequate diets determined by atomic 

absorption were 0.4 ± 0.1 and 33.1 ± 0.3 mg/kg, respectively.  
5 Biotin was mixed with dyetrose and added to provide 0.005 g biotin/g egg white protein. 
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Table 3.2. Effects of dietary zinc status and rosiglitazone on selected plasma anti-

inflammatory cytokine concentrations in LDL-R-/- mice1 

 
     P-values 2 

Cytokine 0 Zn 0 Zn + RSG 30 Zn 30 Zn + RSG Overall Zn RSG 

 pg/mL    

IL-4 3 7.1 ± 0.3 6.6 ± 0.3  6.7 ± 0.3 7.0 ± 0.3  0.602 0.955 0.622 

IL-10 4 53.9 ± 8.3 51.4 ± 7.3 67.3 ± 8.0 85.3 ± 7.6  0.012 0.004 0.323 

IL-13 4 179.5 ± 9.3  166.2 ± 8.2 163.3 ± 8.9 173.3 ± 8.9  0.675 0.730 0.718 
 
1 Values are means ± SEM. 
2 P-values from two-way ANOVA.  Zn × RSG interactions were not significant, P > 0.05.  
3 n = 10-14.  
4 n = 10-13.  
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Table 3.3. Effects of dietary zinc status and rosiglitazone on selected plasma pro-

inflammatory cytokine/chemokine concentrations in LDL-R-/- mice 1 

 
      P-values 2 

Cytokine/ 
Chemokine 

0 Zn 0 Zn + RSG 30 Zn 30 Zn + RSG Overall Zn RSG Zn×RSG

 pg/mL     

IL -1α 3 12.1±3.0 16.0±2.5 26.6±2.8 25.5±2.7 0.001 <0.001 0.604 * 

IL -2 3 25.8±4.1 24.2±3.4 20.6±3.7 23.2±3.7 0.801 0.406 0.891 * 

IL -6 4 60.6±5.5 76.7±4.9 57.3±4.5 56.6±4.7 0.018 0.023 0.124 0.095 

IL -12 5 105.0±15.9 b 130.6±12.3 b 184.2±15.0 a 104.6±15.0 b 0.002 0.076 0.072 0.001 

IL -17 6 20.3±2.0 16.7±1.7 18.5±1.8 16.2±1.9 0.428 0.537 0.116 * 

TNFα 6 15.0±2.6 16.0±2.1 13.2±2.3 10.7±2.5 0.419 0.146 0.752 * 

MCP-1 5 85.3±44.4 145.2±34.4 98.1±36.9 110.8±40.1 0.700 0.784 0.359 * 
 

1 Values are means ± SEM.   
2 P-values from two-way ANOVA.  Means without a common letter differ (a > b), P < 0.01.  * Zn 

× RSG interactions were not significant, P > 0.05.   
3 n = 10-14.  
4 n = 9-13.  
5 n = 9-15.  
6 n = 10-15.  
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Figure 3.1. Treatment of the LDL-R-/- mice.   
LDL-R-/- mice were fed a low-fat diet with either 0 or 30 mg/kg of zinc.  After 3 wk of 

feeding the low-fat diet, all mice were fed a high-fat diet for 1 wk, without changing the 

original zinc nutritional status.  Rosiglitazone (20 mg/kg/d) or the vehicle (0.25% of 

methylcellulose) was administered by gavage once per day for 9 d, which was initiated 2 

d prior to the start of the high-fat regimen.  LF, low-fat; HF, high-fat. 0 Zn, 0.4 mg/kg of 

zinc; 30 Zn, 33.1 mg/kg of zinc. RSG, rosiglitazone. 
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Figure 3.2. Body weight changes of the LDL-R-/- mice. 

Values are means ± SEM, n = 10-15.  
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Figure 3.3. Effects of dietary zinc status and rosiglitazone on plasma and liver zinc 

levels in LDL-R-/- mice. 

Values are means ± SEM, n = 9-15.  Means without a common letter differ (a > b), P < 

0.01.  * Zn × RSG interaction was not significant (P > 0.05).  
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Figure 3.4. Effects of dietary zinc status and rosiglitazone on iNOS (A) and MCP-1 

(B) gene expression in LDL-R-/- mice. 

The vertical axis in each graph represents relative units, calculated as the ratio of the copy 

number of the target gene over the copy number of the endogenous control (18S rRNA 

and β-actin, respectively).  Values are means ± SEM, n = 7-9.  Means without a common 

letter differ (a > b), P < 0.05.  
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Figure 3.4 (Continued) 
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Figure 3.5. Effects of dietary zinc status and rosiglitazone on IκBα protein 

expression in LDL-R-/- mice 

The values are ratios of the densitometric units of IκBα over those of β-actin.   Values 

are means ± SEM, n = 3.  Means without a common letter differ (a > b), P < 0.05.  The 

gel data are a representative of the typical outcome of three repeated Western blot 

experiments. 
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Figure 3.6. Effects of dietary zinc status and rosiglitazone on NF-κB (A) and PPAR 

(B) DNA binding activities in LDL-R-/- mice. 

The vertical axis in each graph represents densitometric units.  Values are means ± SEM, 

n = 3.  The gel data are representatives of the typical outcome of three repeated EMSA 

experiments for NF-κB and PPAR, respectively. 

NF-κB 
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Figure 3.6 (Continued) 
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Figure 3.7. Proposed mechanism of pro-inflammatory environment and endothelial 

cell activation during zinc deficiency. 

Zinc deficiency induces an increase in cellular oxidative stress, activation of NF-κB and 

induction of inflammatory cytokines and adhesion molecules.  The anti-inflammatory 

properties of PPARs are blocked in part by zinc deficiency, further contributing to 

inflammation and monocyte adhesion to activated endothelial cell.  The apparent 

imbalance of NF-κB and PPAR signaling during zinc deficiency may be a major risk 

factor of atherosclerosis.  
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Chaper 4.  Zinc Deficiency Alters Lipid Metabolism in LDL-Receptor-
Deficient Mice Treated with Rosiglitazone 

 
4.1 Synopsis 

 Zinc is a structural and functional component of PPAR and zinc deficiency may 

be associated with an increased risk for cardiovascular diseases.  We tested the 

hypothesis that zinc deficiency compromises lipid metabolism in rosiglitazone-treated 

mice lacking the functional LDL-R gene.  LDL-R deficient (LDL-R-/-) mice were 

maintained for three weeks on low-fat (7g/100g) diets that were either zinc deficient or 

zinc adequate.  Subsequently, diets were adjusted to a high-fat (15g/100g) regimen for 

one week to produce a biological environment of mild oxidative and inflammatory stress.  

Half of the mice within each zinc group were gavaged daily with the PPARγ agonist 

rosiglitazone, starting two days prior to the high-fat feeding.  Selected lipid parameters 

were studied.  Zinc deficiency increased plasma total cholesterol, which was also 

elevated by rosiglitazone.  Zinc deficiency also caused an increased lipoprotein-

cholesterol distribution towards the non-HDL fraction (VLDL, intermediate density 

lipoprotein, LDL).  Plasma total fatty acids tended to be increased during zinc deficiency, 

and rosiglitazone treatment resulted in similar changes in the fatty acid profile in zinc 

deficient mice.  Fatty acid translocase (FAT/CD36) expression in abdominal aorta was 

up-regulated by rosiglitazone only in zinc-deficient mice.  In contrast, rosiglitazone 

treatment markedly increased lipoprotein lipase (LPL) expression only in zinc-adequate 

mice.  These data suggest that in this atherogenic mouse model treated with rosiglitazone, 

lipid metabolism can be compromised during zinc deficiency, and that adequate dietary 

zinc may be considered during therapy with the anti-diabetic medicine rosiglitazone. 

 

 

4.2 Introduction 

 Cardiovascular diseases are a major health problem in industrialized countries and 

have a rising incidence in the non-industrialized part of the world as well.  Causes for the 

development of atherosclerosis are usually of multiple nature.  Lifestyle and nutrition can 

be closely linked to the onset and the pace of progression of atherosclerotic events [121, 
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122].  Hyperlipidemia, central obesity, impaired glucose tolerance and overall insulin 

resistance are among the many risk factors associated with accelerated pathology of 

atherosclerosis [123].   

 Studies in rodent models suggest that zinc supplementation is effective for 

reducing the incidence of both Type I and Type II diabetes [124], and that zinc deficiency 

can activate stress pathways resulting in loss of insulin sensitivity [125].  Evidence also 

suggests that Type II diabetic patients experience zinc malabsorption and increased 

excretion of urinary zinc [6].   

 Synthetic PPARγ agonists, such as thiazolidinediones (including rosiglitazone and 

pioglitazone), improve insulin sensitivity and glycemic control in type II diabetes and 

may reduce atherosclerosis progression in patients with diabetes [126, 127].  Protective 

mechanisms of PPARγ agonists may include favorable changes in plasma lipoprotein 

profiles and inflammatory markers.  For example, rosiglitazone can raise HDL-

cholesterol levels and lower C-reactive protein levels in patients with type II diabetes [96, 

101, 128].  Rosiglitazone also is able to lower postprandial triglyceride levels in patients 

with type II diabetes, without changes in fasting plasma triglycerides [129].  However, 

favorable lipid effects of rosiglitazone may not be as apparent in nondiabetic patients.  

Even though rosiglitazone can lower plasma concentrations of C-reactive protein and IL-

6, it also can increase total cholesterol [103], as well as LDL cholesterol and triglyceride 

levels [130] in nondiabetic patients.  Other endogenous or exogenous factors, such as the 

overall nutritional status of a patient, may play a role in the effectiveness of PPAR 

agonists as a broad antiatherogenic agent [131]. 

 There is evidence that zinc can modulate PPAR signaling [25].  The DNA-

binding domain (DBD) of PPAR has two sets of zinc fingers [22].  The specificity and 

polarity of PPAR-DNA binding seems to be at least in part due to features in the zinc 

finger domains of PPAR [132].  The DNA binding partner of PPAR, retinoid X receptor 

(RXR), also has a DBD with two zinc fingers involved [24].  Upon ligand activation, 

PPAR heterodimerizes with RXR and binds to PPAR response elements (PPRE) within 

the promoter region of target genes, thereby regulating or transactivating their expression 

[133].  As zinc is an essential constituent of the DBD of both PPAR and RXR, zinc 

deficiency could impair the function of this transcription factor complex.   
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Zinc fingers also have been described to mediate protein-lipid interactions.  Zinc-

containing FYVE domains are specific in recognizing and binding phosphatidylinositol-

3-phosphate (PtdIns3P), a component of cell membrane [134].  It is thus very likely that 

zinc plays a critical role in PPAR signaling and associated regulation of cellular lipid 

metabolism.  Thus, the objective of the present study was to explore the role of zinc in 

the antiatherogenic properties of the PPARγ ligand rosiglitazone, with a focus on selected 

lipid parameters in an atherogenic mouse model.  We hypothesize that PPAR signaling 

and associated lipid metabolism are compromised during zinc deficiency and that 

adequate dietary zinc may be critical to maintain favorable lipid effects of the anti-

diabetic medicine rosiglitazone. 

 

 

4.3 Materials and Methods 

Animals and diets (See Chapter Three) 

 Sufficient plasma samples were not available from all animals for glucose 

analysis, resulting in variations in sample size as outlined. 

  

Zinc quantification (See Chapter Three) 

  

Measurement of plasma cholesterol and lipoprotein-cholesterol distribution 

 Plasma total cholesterol content was determined enzymatically using a 

commercially available kit, Wako Cholesterol E (Wako Chemicals USA, Inc., Richmond, 

VA).  Plasma cholesterol distribution in different lipoprotein fractions was measured by 

Jessica Moorleghen at the University of Kentucky Cardiovascular Research Center using 

fast-performance liquid chromatography (FPLC) utilizing a Biologic DuoFlow System 

(Bio-Rad Laboratories, Hercules, CA) equipped with a SuperoseTM 6HR 10/30 column 

(Amersham Pharmacia Biotech AB, Uppsala, Sweden) [135].   
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Analysis of plasma fatty acids 

 Plasma total lipids were extracted with chloroform [136] followed by methyl 

esterification of total fatty acids with BF3/Methanol (Supelco, Bellefonte, PA).  Analysis 

of fatty acids was performed by Dr. Xiang-an Li at the University of Kentucky 

Department of Pediatrics using a gas chromatography system, Agilent 6890 GC G2579A 

system (Agilent, Palo Alto, CA) equipped with an OMEGAWAXTM 250 capillary 

column (Supelco, Bellefonte, PA) and a flame ionization detector.  An Agilent 5973 

network mass selective detector (Agilent, Palo Alto, CA) was used to identify target 

peaks.  Heptadecanoic acid (17:0) was used as an internal standard for data analysis. 

 

Real-time RT-PCR 

 Abdominal aorta and liver were excised from the mice, immerged in RNAlater 

(Qiagen, Valencia, CA) and stored at -80° C until analysis.  Total RNA was isolated from 

abdominal aorta using RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia, CA) after 

surrounding adipose and connective tissues were removed, and total RNA was isolated 

from liver using RNeasy Mini Kit (Qiagen, Valencia, CA).  cDNA was generated using 

the Reverse Transcription System (Promega, Madison, WI).  Gene expression was 

determined by real-time PCR using the ABI Prism 7300 Real Time PCR System 

(Applied Biosystems, Branchburg, NJ) and TaqMan® Universal PCR Master Mix, No 

AmpErase® UNG (Applied Biosystems, Branchburg, NJ).  TaqMan® gene expression 

assays were used for mouse fatty acid translocase (FAT/CD36), and lipoprotein lipase 

(LPL) (Mm00432403_m1, and Mm 00434764_m1, Applied Biosystems, Branchburg, 

NJ).  Each assay consisted of a specific pair of unlabeled PCR primers and a specific 

TaqMan® MGB probe which was 5’ end labeled with a FAMTM reporter dye and 3’ end 

labeled with a minor groove binder/non-fluorescent quencher (MGBNFQ).  Detection of 

18S rRNA, or β-actin as endogenous control, utilized pre-developed Taqman® assay 

reagents, i.e. Eukaryotic 18S rRNA Endogenous Control, or Mouse ACTB Endogenous 

Control (Applied Biosystems, Branchburg, NJ). 
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Measurement of plasma glucose 

 Plasma glucose concentration was determined using glucose oxidase/peroxidase 

(PGO enzymes) (Sigma-Aldrich, Saint Louis, MO) and o-dianisidine dihydrochloride 

(Sigma-Aldrich, Saint Louis, MO) according to the manufacturer’s instruction.  The 

amount of glucose in the test sample was determined by measurement of the absorbance 

at 450 nm using a SpectraMax® M2 microplate reader (Molecular Devices Corporation, 

Sunnyvale, CA).  

 

Statistical analysis (See Chapter Three) 

 

 

4.4 Results 

 Rosiglitazone treatment contributed to a predictable biological outcome by 

affecting plasma insulin and adiponectin concentrations.  Administration of rosiglitazone 

resulted in a 36 % decrease in plasma insulin concentrations and a 2-fold increase in 

adiponectin concentrations (Table 4.1).   

 

Zinc deficiency elevates plasma total cholesterol in LDL-R-/- mice 

The zinc-deficient diet led to higher concentrations of plasma total cholesterol in 

LDL-R-/- mice compared with the zinc-adequate diet (Fig. 4.1).  Treatment with 

rosiglitazone increased the concentration of plasma total cholesterol (Fig. 4.1).   

 

Zinc deficiency increases non-HDL cholesterol distribution in LDL-R-/- mice   

 Consistent with the data on plasma total cholesterol, zinc deficiency increased 

concentrations of plasma cholesterol contained in the non-HDL fraction [VLDL, 

intermediate density lipoprotein (IDL), LDL] as compared with zinc-adequate mice (area 

under the curves; P < 0.001, Fig. 4.2).  In contrast, levels of HDL cholesterol were similar 

in all mice independent of the dietary zinc intake (Fig. 4.2).  Rosiglitazone treatment had 

no effect on lipoprotein-cholesterol profile under either zinc-adequate or zinc-deficient 

conditions (Fig. 4.2). 
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Zinc deficiency elevates plasma fatty acid concentrations in LDL-R-/- mice 

 The major plasma fatty acids are palmitic acid (16:0), stearic acid (18:0), oleic 

acid (18:1), linoleic acid (18:2), and arachidonic acid (20:4), which add up to about 90% 

of total plasma fatty acids [137].  Plasma total fatty acids in LDL-R-/- mice tended to be 

increased during zinc deficiency (P = 0.080, Table 4.2).  Detailed analysis of the fatty 

acid profile revealed that  the patterns of fatty acid changes due to rosiglitazone treatment 

(except for 20:4) were similar and that elevated levels of  18:0 and 18:1 in zinc-deficient 

LDL-R-/- mice were mostly responsible for the increased total fatty acid levels (Table 

4.2).   

 

The effects of rosiglitazone on expression of genes associated with lipid uptake and 

metabolism in LDL-R-/- mice are regulated by zinc status  

 LPL is an enzyme which hydrolyses triglyceride-rich lipoproteins and CD36 

mediates cellular uptake of free fatty acids.  Zinc status did not affect the baseline LPL 

and CD36 mRNA expression (Fig. 4.3).  Treatment with rosiglitazone up-regulated LPL 

mRNA expression in livers (P < 0.05, Fig. 4.3).   

 The effects of rosiglitazone on CD36 gene expression in abdominal aortas were 

also regulated by zinc status.  Specifically, CD36 mRNA levels were significantly 

increased (1.75 fold) in zinc-deficient LDL-R-/- mice which received rosiglitazone 

treatment (P < 0.05, Fig. 4.3).  These effects were not observed in zinc-adequate mice 

(Fig. 4.3).   

 

 

4.5 Discussion 

Zinc is critical for normal function of numerous proteins.  Thus, a change in 

cellular zinc status can affect multiple cellular events.  Because PPARs play a role in 

lipid transport and metabolism [138], lack of zinc appears to result in dysfunctional 

PPAR signaling with a subsequent detrimental lipid metabolism.  PPARγ activation by its 

endogenous or exogenous ligands, such as TZDs, up-regulates the expression of 

adiponectin, a PPARγ target gene [139], which promotes insulin sensitivity and down-
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regulates inflammatory cytokines and thus decreases insulin resistance [131, 140].  Most 

of all, PPARγ activates numerous genes involved in lipid storage and lipogenesis [131] 

and in particular in the cellular assimilation of lipids via anabolic pathways [141].  

Whether or not the overall antiatherogenic properties of PPARγ agonists are due to 

favorable lipid changes or anti-inflammatory properties is not clear.  However, protection 

against cardiovascular complications by PPARγ agonists is well accepted.  For example, 

rosiglitazone, a PPARγ agonist,  strongly inhibited the development of atherosclerosis in 

LDL-R-/- mice [99]. 

The role of zinc deficiency in atherosclerosis is not well defined; however, 

epidemiological studies suggest that in some population groups, low serum 

concentrations of zinc are associated with coronary artery disease [67].  Although 

controversy still exists about the effect of zinc on human lipoprotein metabolism, some 

studies confirmed the lipid lowering effects of zinc in humans.  Oral zinc 

supplementation decreased total and LDL cholesterol, while HDL cholesterol increased 

in both normal and diabetic humans [142, 143].  Other studies, however, found that zinc 

supplementation had little effect on lipoprotein profiles [144] or decreased HDL 

cholesterol [145, 146].   

In the present in vivo study, we provide evidence that PPARγ-regulated gene 

expression and associated lipid metabolism are compromised during zinc deficiency and 

that adequate dietary zinc may be critical to maintain favorable lipid effects of 

rosiglitazone.  Treatment with rosiglitazone tended to increase plasma total cholesterol 

more in zinc-deficient mice.  Such lipid change is atherogenic and suggests that any 

possible favorable lipid profile induced by rosiglitazone treatment may be compromised 

during zinc deficiency.  Furthermore, zinc deficiency alone caused a shift of lipoprotein-

cholesterol distribution to the non-HDL (VLDL, IDL, and LDL) fraction.  This is 

consistent with our previous findings that zinc deficiency can increase plasma lipids and 

atherosclerotic markers in LDL-R-/- mice [118].   

Although many studies suggest that treatment with PPARγ agonists such as 

rosiglitazone stabilizes or improves plasma lipid parameters, especially in diabetic 

patients [102, 147, 148], other studies reported significantly increased triglycerides 

following treatment with rosiglitazone [130, 149, 150].  In the LDL-R-/- mouse model, we 
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observed an elevation of total plasma fatty acids in zinc-deficient mice treated with 

rosiglitazone.  All major plasma fatty acids appeared to be elevated in the zinc-deficient 

group receiving rosiglitazone.  There is clear evidence that hypertriglyceridemia is an 

independent risk factor of cardiovascular diseases such as atherosclerosis [65, 151].  

Furthermore, triglyceride-rich lipoproteins and free fatty acids are often elevated in 

patients with type II diabetes, and thus a major risk factor [152, 153].    

Our data suggest that expression of the LPL gene, which is a PPARγ target gene 

[154], and is also critical in the clearance of triglyceride-rich lipoproteins, was up-

regulated in zinc-adequate mice upon treatment with rosiglitazone.   Other researchers 

observed similar results in brown adipose tissue of  rodents treated with this PPARγ 

agonist [147].  In contrast, mRNA expression of LPL was minimally up-regulated in 

zinc-deficient mice as a result of rosiglitazone treatment, which may be due to 

compromised PPARγ function.  Because LPL is critical in clearance of triglyceride-rich 

lipoproteins, and is able to limit inflammation by generating endogenous PPARα ligands  

(thus mediating PPARα activation) [155], dysfunction of this gene due to zinc deficiency 

could further contribute to lipid risk factors of atherosclerosis. 

Scavenger receptors like CD36 are important in the early pathology of 

atherosclerosis, which includes macrophage uptake of modified LDL and foam cell 

formation [156].  In fact, the absence of CD36 in the atherogenic ApoE-deficient mice 

maintained on a high fat diet resulted in a marked decrease in total lesion area in the 

aortic tree, which could be due to the decreased uptake of oxidized LDL by macrophages 

[156].  There is also evidence that an increase in CD36 is caused by defective insulin 

signaling and that administration of PPARγ agonists can decrease CD36 protein [157].  In 

our study, CD36 gene expression in abdominal aorta was significantly up-regulated by 

rosiglitazone only in zinc-deficient mice, suggesting accelerated uptake of lipids and 

especially pro-oxidative and pro-inflammatory fatty acids, such as linoleic acid and 

arachidonic acid.  In contrast, in another study, rosiglitazone up-regulated aortic CD36 

mRNA in mice consuming a high-cholesterol diet [99].  There is evidence using human 

macrophages that CD36 up-regulation by darglitazone, another PPARγ ligand,  is 

modified by the presence or absence of physiological concentrations of albumin-bound 

oleic or linoleic acid [158].  In the present study, rosiglitazone treatment resulted in 
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elevated levels of plasma total cholesterol and total fatty acids in zinc deficient mice, 

which could increase cellular oxidative stress.  This may be sufficient to activate the 

redox-sensitive transcription factor nuclear factor erythroid-2 related factor 2 (Nrf2) 

[159],  which is another important transcription factor involved in the induction of CD36 

besides PPARγ [160].  Indeed oxidative stress has been found to increase the expression 

of CD36 in macrophages from atherosclerotic mice [161].  Therefore, the up-regulation 

of CD36 by rosiglitazone in zinc deficient mice could be due in part to the activation of 

Nrf2 caused by increased oxidative stress.  Our data suggest that treatment with 

rosiglitazone during a nutritional state of zinc deficiency may increase, rather than 

decrease, hyperlipidemic risk factors. 

There are some unexpected results in this study.  For example, the similar effects 

of rosiglitazone on adiponectin levels in mice on either zinc deficient or zinc adequate 

diets suggest that adiponectin gene expression may be only partially regulated by a 

PPARγ-dependent pathway and that rosiglitazone may also regulate the expression of 

adiponectin via PPARγ-independent pathways [162].  Therefore, it is likely that some 

PPARγ-independent pathway which is not zinc dependent contributed to the observed 

effects of rosiglitazone treatment on adiponectin levels.   

In summary, we are providing in vivo evidence that zinc deficiency interacts with 

rosiglitazone treatment to induce selected proatherogenic lipid profiles in LDL-R-/- mice.  

Our data also illustrate that adequate dietary zinc is critical for preventing or minimizing 

some possible side effects of antidiabetic PPARγ agonists.  For example, CD36 gene 

expression in abdominal aorta was significantly up-regulated by rosiglitazone only in 

zinc-deficient mice.  Even though not statistically significant, treatment with 

rosiglitazone tended to increase plasma total cholesterol and fatty acids more when mice 

were zinc deficient.  Because dietary zinc intake of certain population groups is still 

below intake recommendations [163], these data emphasize the importance of adequate 

dietary zinc in humans during treatment phases associated with diabetes and other 

cardiovascular risk factors. 
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Table 4.1. Effects of dietary zinc status and rosiglitazone on plasma glucose, insulin, 

and adiponectin concentrations in LDL-R-/- mice 1 

 

   P-values 2 

 0 Zn 0 Zn + RSG 30 Zn 30 Zn + RSG Overall Zn RSG 

Glucose 3 

mmol/L 
15.6±1.6 13.1±0.9 17.2±0.9 16.0±1.1 0.0076 0.0319 0.1455 

Insulin 4 

pmol/L 
118.5±18.1 78.5±16.7 176.3±18.1 110.6±16.7 0.0024 0.0176 0.0055 

Adiponectin 4 
nmol/L 

511.2±121.5 1495.5±112.2 328.2±121.5 1056.6±121.5 0.0001 0.0149 0.0001 

 

1 Values are means ± SEM. 
2 P-values from two-way ANOVA.  Zn × RSG interactions were not significant, P > 0.05.  
3 n = 4–14. 
4 n = 6–7. 
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Table 4.2. Effects of dietary zinc status and rosiglitazone on plasma total and 

individual fatty acid concentrations in LDL-R-/- mice 1 

 

   P-values 2 

Fatty 
acid 0 Zn 0 Zn + RSG 30 Zn 30 Zn + RSG Overall Zn RSG 

 mmol/L    

Total 9.39 ± 0.61 11.15 ± 0.56 8.67 ± 0.83 9.25 ± 0.78 0.062 0.080 0.150 

16:0 1.85 ± 0.16 2.19 ± 0.13 1.69 ± 0.13 1.82 ± 0.13  0.039 0.059 0.115 

18:0 1.23 ± 0.17 1.36 ± 0.14 0.95 ± 0.13  0.90 ± 0.14  0.045 0.015 0.837 

18:1 1.52 ± 0.14 1.82 ± 0.12 1.10 ± 0.11  1.35 ± 0.12 < 0.001 < 0.001 0.031 

18:2 3.40 ± 0.33 4.22 ± 0.28 3.38 ± 0.26  3.55 ± 0.28  0.128 0.232 0.130 

20:4 1.40 ± 0.16 1.56 ± 0.14 1.55 ± 0.13  1.63 ± 0.14  0.557 0.453 0.393 
 

1 Values are means ± SEM, n = 5-8. 
2 P-values from two-way ANOVA.  Zn × RSG interactions were not significant, P > 0.05. 
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Figure 4.1. Effects of dietary zinc status and rosiglitazone on plasma total 

cholesterol concentration in LDL-R-/- mice. 

Values are means ± SEM, n = 10-15.  Zn × RSG interaction was not significant (P > 

0.05).  



72 

       A 

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

1 6 11 16 21 26 31
Fraction Number

A
bs

or
ba

nc
e 

at
 6

00
nm

0 Zn
0 Zn + RSG
30 Zn
30 Zn + RSG

non-HDL HDL

 
 
 

Figure 4.2. Effects of dietary zinc status and rosiglitazone on cholesterol distribution 

in different lipoprotein fractions in LDL-R-/- mice. 

A. Lipoprotein-cholesterol distribution.  An equal amount (50 μL) of individual plasma 

samples was applied to the FPLC column.  The non-HDL includes VLDL, IDL, and 

LDL.  B. Area under the curve. Values are means ± SEM, n = 4.  Zn × RSG interactions 

were not significant (P > 0.05).  
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Figure 4.2 (Continued)  
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Figure 4.3. Effects of dietary zinc status and rosiglitazone on LPL and CD36 gene 

expression in LDL-R-/- mice. 

The vertical axis represents relative units, calculated as the ratio of the copy number of 

the target gene over the copy number of the endogenous control (18S rRNA and β-actin, 

respectively).  Values are means ± SEM, n =10-15 for LPL and 7-9 for CD36 mRNA 

expression, respectively.  * Zn × RSG interaction was not significant (P > 0.05). 

Copyright © Huiyun Shen 2008 
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Chaper 5.  Zinc Nutritional Status Modulates Expression of AhR-
Responsive P450 Enzymes in Vascular Endothelial Cells 

 
5.1 Synopsis 

Zinc has anti-inflammatory properties and is crucial for the integrity of vascular 

endothelial cells, and the development and homeostasis of the cardiovascular system.  

The aryl hydrocarbon receptor (AhR) which is expressed in the vascular endothelium also 

plays an important role in responses to xenobiotic exposure and cardiovascular 

development.  We hypothesize that cellular zinc can modulate induction of AhR- 

responsive genes in endothelial cells.  To determine if zinc deficiency can alter responses 

to AhR ligands, aortic endothelial cells were exposed to the AhR ligands 3, 3’, 4, 4’-

tetrachlorobiphenyl (PCB77) or beta-naphthoflavone (β-NF) alone or in combination 

with the membrane permeable zinc chelator TPEN, followed by measurements of the 

AhR responsive cytochrome P450 enzymes CYP1A1 and 1B1.  Compared to vehicle- 

treated cells, both PCB77-induced CYP1A1 activity (EROD) and mRNA expression 

were significantly reduced during zinc deficiency.  In addition, PCB77 and β-NF-

mediated up-regulation of CYP1A1 and CYP1B1 protein expression was significantly 

reduced in zinc-deficient endothelial cells.  The inhibition of CYP1A1 and CYP1B1 

protein expression caused by zinc deficiency was reversible by cellular zinc 

supplementation.  Overall, our results strongly suggest that nutrition can modulate an 

environmental toxicant-induced biological outcome and that adequate levels of individual 

nutrients such as zinc are necessary for induction of AhR-responsive genes in vascular 

endothelial cells. 

 

 

5.2 Introduction 

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that 

is normally found in the cytoplasm and complexed with Hsp90, XAP2, Ara9 and p23.  

Upon activation, the AhR complex goes through a conformational change that exposes a 

nuclear localization signal domain and triggers translocation from the cytosol to the cell 
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nucleus where it forms a complex with ARNT/HIF-1β.  This complex recognizes specific 

enhancer domain sequences in the promoter regions of responsive genes that are known 

as xenobiotic response elements (XREs).  The AhR/ARNT heterodimers stimulate 

transcription of Phase I and Phase II xenobiotic metabolizing enzymes.  Cytochrome 

P450 genes, specifically those belonging to the CYP1 family (e.g. CYP1A1/2 and 

CYP1B1) are highly inducible by AhR activation, and the molecular mechanisms 

involved in their regulation by AhR have been well characterized [45, 50].  Although 

most of the research performed on AhR has focused on its role in the molecular, 

biochemical, and toxic responses to xenobiotic ligands, recent studies have also shown 

that the AhR plays a critical role in the development of various organ systems and 

cardiovascular homeostasis [51].  For example, mice that lack the AhR gene have been 

shown to suffer from cardiac fibrosis, hypertrophy, increased left ventricular mass, 

increased expression of the cardiac hypertrophy markers β-myosin heavy chain, and β-

myosin light chain 2V, and increased plasma levels of the vasoactive agents angiotensin 

II and endothelin-1 [164-166].  Such findings combined with the high degree of 

conservation of AhR among species suggest that, in addition to orchestrating responses to 

exposure to xenobiotic ligands, the AhR plays an important role in systemic homeostasis 

and development [50].  Little is known about nutritional modulation of AhR-mediated 

cell signaling.  The current study focuses on the micronutrient zinc, because of its 

importance in regulating protein structure and cell signaling [55]. 

Zinc has multiple roles in maintaining the physiological conditions of the 

cardiovasculature [55], and zinc may be critical in normal vascular development.  For 

example, zinc deficiency leads to decreased function of transcription factors associated 

with cardiovascular development and homeostasis (e.g. PPARs α and γ,  and GATA-4) 

[26, 56].  Furthermore, a threshold activity of the zinc finger transcription factors GATA4 

and GATA6 is required for gene expression in the developing cardiovascular system 

[167].  There is also evidence that zinc may be critical for normal AhR signaling.  For 

example, both AhR and ARNT can interact with the zinc finger domain of Sp1 via their 

basic HLH/PAS domains [54], and AhR can participate in induction of the zinc finger 

transcription factor Slug, which, in turn, regulates cellular physiology including cell 

adhesion and migration [168]. 
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The objectives of the experiments described below were to determine if zinc plays 

a critical role in AhR function in the vascular endothelium.  Our data strongly suggests 

that zinc is required for induction of the AhR-responsive genes CYP1A1 and CYP1B1 

upon endothelial cell exposure to xenobiotic and non-toxic AhR ligands.  Alterations in 

AhR function and transcription present a novel mechanism for understanding induction 

of vascular diseases associated with zinc deficiency and exposure to environmental 

pollutants such as AhR ligands. 

 

 

5.3 Materials and Methods 

Cell culture and experimental media    

Endothelial cells were isolated from porcine pulmonary arteries and cultured as 

previously described [75].  Cells were exposed to experimental media containing the 

membrane-permeable zinc chelator N, N, N', N'-Tetrakis - (2-pyridylmethyl) 

ethylenediamine (TPEN) (Sigma-Aldrich, St. Louis, MO) with or without zinc 

supplementation (20 µM) and/or the AhR ligands PCB77 or β-naphthoflavone (β-NF) 

(Sigma-Aldrich, St. Louis, MO) for 24 h.  PCB77 was kindly provided by Dr. Larry W. 

Robertson (University of Iowa).  The control media were composed of culture media 

containing 0.05 % of ethanol and up to 0.04 % of DMSO. 

. 

Measurement of CYP1A activity   

Cellular cytochrome P450 1A (CYP1A) activity was measured in intact 

endothelial cells grown in 48 well plates  (Costar, Corning Incorporated, NY) by 

ethoxyresorufin-o-deethylase (EROD) activity assay as previously described [169, 170].  

7-Ethoxyresorufin was used as a CYP1A substrate.  CYP1A activity indicated by the 

fluorescence of resorufin generated was measured using a Cytofluor 4000 plate reader 

(PE Biosystems, Foster City, CA) with excitation and emission wave lengths at 530 nm 

and 590 nm, respectively. 
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Measurement of CYP1A1 gene expression    

Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s direction.  cDNA was generated using the Reverse 

Transcription System (Promega, Madison, WI).  Gene expression of CYP1A1 was 

determined by RT-PCR.  β-actin was used as an endogenous control for normalizing the 

expression of CYP1A1.  Specific primer sequences were synthesized by IDT 

Technologies, Inc, San Jose, CA.  The primers used were: CYP1A1, forward, 5'-TGGAG 

AGGCA AGAGT AGTTG G-3', and reverse, 5'-GGCAC AACGG AGTAG CTCAT A-

3’; β-actin, forward,  5’-GGGACCTGACCGACTACCTC-3’, and reverse, 5’-

GGGCGATGATCTTGATCTTC-3’.  Thermocyclings were performed as previously 

described [169, 171].  The PCR products were separated by 1% agarose gel 

electrophoresis, stained with SYBR gold (Invitrogen, Carlsbad, CA) and visualized 

utilizing phosphoimaging technology (FLA-2000, Fuji, Stamford, CT).  

 

Measurement of CYP1A1 and CYP1B1 protein expression   

Cellular protein was extracted as previously described [62].  Protein extracts were 

electrophoresed on 8-10% SDS-polyacrylamide gels followed by transfer to 

nitrocellulose membranes.  The membranes were incubated in blocking solution (5 % 

non-fat milk in 1×TBST) for 1 h followed by incubation with a 1:1000 dilution of 

CYP1A1 goat polyclonal IgG (Santa Cruz Biotechnology, Santa Cruz, CA) or CYP1B1 

rabbit polyclonal IgG (Santa Cruz Biotechnology, Santa Cruz, CA) or a 1:4000 dilution 

of β-actin rabbit polyclonal IgG (Sigma, St. Louis, MO) in blocking buffer overnight at 4 

°C.  β-actin was used as an endogenous control to normalize the expression of proteins of 

interest.  The membranes were then incubated with a mouse anti-goat or goat anti-rabbit 

secondary antibody conjugated to horseradish peroxidase.  Signals of the blots were 

measured using the enhanced chemiluminescence (ECL) detection system (GE 

Healthcare, Piscataway, NJ). 

 

Statistical analysis    

Statistical analysis was performed with SPSS 12.0 (SPSS, Inc., Chicago, IL).  

Data were analyzed using one way ANOVA with post hoc comparisons of the means by 
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LSD procedure.  Differences were considered significant at P < 0.05.  Data are presented 

as means ± SEM.   

 

 

5.4 Results 

Zinc deficiency reduces PCB77-induced CYP1A activity and CYP1A1 mRNA 

expression in vascular endothelial cells 

To determine if zinc deficiency can alter induction of the AhR-responsive enzyme 

CYP1A1, we first measured PCB77 induction of CYP1A1 activity by the EROD assay.  

As expected, PCB77, a potent AhR agonist, significantly increased cellular CYP1A1 

activity.  Zinc deficiency caused by TPEN treatment did not change basal CYP1A1 

activity but significantly reduced PCB77-induced CYP1A1 activity in vascular 

endothelial cells (Fig. 5.1A).  To determine if zinc deficiency alters CYP1A1 

transcription, we measured CYP1A1 mRNA expression in endothelial cells treated with 

PCB77 alone or in combination with TPEN.  The PCB77-mediated up-regulation of 

CYP1A1 mRNA expression was significantly reduced during zinc deficiency (Fig. 5.1B). 

 

Zinc deficiency compromises PCB77-induced CYP1A1 and CYP1B1 protein expression 

in vascular endothelial cells, which can be reversed with zinc supplementation 

Western blot analysis demonstrated that the compromising effect of zinc 

deficiency on AhR responsive protein expression could be reversed by zinc 

supplementation.   Specifically, PCB77 significantly increased the cellular protein levels 

of CYP1A1 and CYP1B1, both major PCB-inducible CYP1 enzymes.  TPEN treatment 

alone did not affect expression of the two proteins, but co-treatment with TPEN and 

PCB77 led to a significant reduction in the expression of both enzymes.  However, zinc 

supplementation of the TPEN-treated cell culture media reversed the reduction of 

CYP1A1 and CYP1B1 observed during zinc deficiency (Fig. 5.2). 

 

Zinc deficiency compromises β-naphthoflavone-induced CYP1A1 protein expression in 

vascular endothelial cells, which can be reversed with zinc supplementation 

To determine if the observations made above were specific not only to PCB77 
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exposure but also relevant to other AhR ligands, similar experiments were performed 

using the non-toxic AhR agonist β-NF.  Treatment with β-NF significantly induced 

CYP1A1 protein expression, which was significantly reduced in TPEN-treated 

endothelial cells.  When zinc was added back to the cell cultures, CYP1A1 protein 

induction by β-NF was completely reversible (Fig. 5.3).  

 

 

5.5 Discussion 

The results from the experiments described above suggest that induction of AhR 

responsive genes in the endothelium is dependent on zinc availability, i.e., our data 

provide evidence that zinc is required for proper induction of the AhR-CYP1 pathway.  

As predicted, both toxic (PCB77) and non-toxic (β-NF) AhR ligands can markedly 

induce both mRNA and protein of CYP1A1, as well as activity of CYP1A1.  Induction of 

the CYP1A1 gene was markedly down-regulated during zinc deficiency.  This suggests 

that zinc deficiency can impair enzyme function, or that zinc is critical for proper 

transcriptional or translational induction of gene expression.  Our data also suggest that 

the dysfunction of the AhR pathway is zinc specific because we were able to reverse the 

reduction in protein of CYP1A1 (and CYP1B1) by zinc supplementation of TPEN-

treated cells. 

Zinc has a critical role in protein structure, enzyme activity and gene regulation.  

Most of the genes that are zinc regulated are involved in signal transduction, responses to 

stress and redox changes, growth and energy utilization [172].  Thus, zinc has a role not 

only in tertiary protein structure but also in the capacity of proteins to interact with DNA, 

RNA and other proteins.  For protein-DNA and protein-RNA interactions, zinc is 

commonly found as a zinc finger motif in transcription factors [173].  Classical zinc 

fingers have also been shown to interact with RNA and DNA/RNA complexes [174].  

The susceptibility of zinc fingers to zinc deprivation is not well understood.  For 

example, certain zinc-finger transcription factors, such as 1α, 25-dihydroxyvitamin D3 

(1α, 25(OH)2D3) receptor (VDR) and retinoid X receptor (RXR), have been found to be 

inactivated due to loss of zinc as a consequence of NO-induced nitrosification of the 

cysteine thiols in the zinc fingers [175, 176].  Following translation, a gene is also subject 
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to zinc dependency during protein folding.  For example, zinc is essential for certain 

chaperones, such as heat shock protein 40 (Hsp40) [177], and Hsp40, Hsp60, and Hsp70 

mRNA expression were down-regulated during zinc deficiency [172]. 

One possible mechanism for our observed compromising effect of zinc deficiency 

on PCB77-induced CYP1A1 and CYP1B1 expression and CYP1A1 activity could have 

been due to changes in AhR expression.  However, western blot analysis of the AhR 

protein expression did not show the same pattern of change (See Appendix, Fig. V).  This 

suggests that zinc deficiency may affect cell signaling downstream of AhR.  Studies from 

other groups also suggest that neither AhR transformation to the DNA binding form nor 

the AhR DNA binding is altered by depletion of metal ions, including zinc [53, 178].  

However, these studies did not measure the effects of metal depletion on AhR dependent 

gene regulation, which may be a major target during zinc deficiency. 

We provide evidence that induction of the AhR responsive P450 genes CYP1A1 

and CYP1B1 is sensitive to cellular zinc depletion.  The mechanism for inhibition of 

AhR-dependent gene up-regulation during zinc deficiency could be inhibition of zinc-

dependent AhR co-factors that are necessary for transcriptional initiation and gene 

induction.  One of these necessary interactions occurs with the transcription co-factor 

Sp1, which binds to GC-rich regions in the promoter of responsive genes and contains 

three Cys2His2 zinc fingers on its C-terminal region [179, 180].  It has been 

demonstrated that Sp1 expression and function is significantly reduced by cellular 

depletion of zinc and other metals [53, 181] and that CYP1A1 induction requires 

AhR/ARNT interactions with Sp1 [54].  Thus Sp1 may be a critical element in 

understanding the involvement of the AhR in the regulation of cardiovascular functions.   

Zinc finger DNA-binding proteins such as members of the Sp1 family also 

contain redox-sensitive thiol groups [182].  For example, attenuation of cardiac 

dysfunction by PPAR-α agonists is associated with down-regulation of redox-regulated 

transcription factors, including Sp1, NF-κB, and AP-1 [183].  The regulation of redox-

regulated transcription factors by zinc and involvement of PPAR signaling further 

supports our data that zinc is also required for the anti-inflammatory properties of both 

PPAR-α and -γ agonists [26]. 

In summary, there is clear evidence that AhR function plays a critical role in the 



82 

development and homeostasis of the cardiovascular system.  Our results demonstrate that 

zinc deficiency can inhibit AhR-dependent gene induction.  Impairment of the AhR 

pathway presents an additional molecular mechanism by which zinc deficiency 

negatively alters transcription factor function and homeostasis of the vascular system. 
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Figure 5.1. Zinc deficiency reduces PCB77-induced CYP1A activity and CYP1A1 

mRNA expression in vascular endothelial cells. 

A. CYP1A activity measured by EROD assay.  Endothelial cells were exposed to vehicle 

control (0.05 % of ethanol and 0.04 % of DMSO), TPEN (1.0 μM), PCB77 (0.04 μM), or 

TPEN (1.0 μM) plus PCB77 (0.04 μM) for 24 hours.  Bars with different letters (a, b, c) 

are statistically different from each other (P < 0.05).  n = 8.  B. CYP1A1 mRNA 

expression measured by RT-PCR.  Cells were exposed to vehicle control, TPEN, PCB77 

(3.4 μM), or TPEN plus PCB77 for 24 hours. The gel data are a representative of the 

typical outcome of four repeated RT-PCR experiments. 
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Figure 5.2. Zinc deficiency compromises PCB77-induced CYP1A1 and CYP1B1 

protein expression in vascular endothelial cells 

Similar to Figure 5.1, endothelial cells were exposed to vehicle control, TPEN, PCB77 

(3.4 μM), TPEN plus PCB77, or TPEN with zinc supplementation (20 μM) plus PCB77 

for 24 hours.  The values are ratios of the densitometric units of CYP1A1 or CYP1B1 

over those of β-actin.  Bars with different letters (a, b, c for CYP1A1 and a’, b’, c’, d’ for 

CYP1B1) are statistically different from each other (P < 0.05).  n = 3.  The gel data are a 

representative of the typical outcome of three repeated western blot experiments. 
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Figure 5.3. Zinc deficiency compromises β-naphthoflavone-induced CYP1A1 

protein expression in vascular endothelial cells 

Endothelial cells were exposed to vehicle control, TPEN, β- NF (1.0 μM), TPEN plus β- 

NF, or TPEN with zinc supplementation plus β- NF for 24 hours.  The values are ratios 

of the densitometric units of CYP1A1 over those of β-actin.  Bars with different letters 

(a, b, c) are statistically different from each other (P < 0.05).  n = 3.  The gel data are a 

representative of the typical outcome of three repeated western blot experiments. 
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Chaper 6.  Conclusion 

 

Atherosclerosis is a major health issue in developed countries and has an 

increasing incidence in developing countries as well.  The pathogenesis of atherosclerosis 

is thought to begin with endothelial cell dysfunction.  Through increased expression of 

adhesion molecules, activated endothelial cells mediate monocyte attachment and 

migration through the endothelium into the arterial wall, where the monocytes 

differentiate into macrophages and by taking up modified lipids further become foam 

cells.  In more advanced stages of atherosclerosis, formation of fibrous plaques and 

complex lesions will ensue, leading to an acute clinical event by plaque rupture and 

thrombosis [1, 2].  The development of atherosclerosis is influenced by both genetic and 

environmental risk factors with the later including nutritional risk factors [1, 2].  

Deficiency of the micronutrient zinc can constitute a risk factor for atherosclerosis [3, 4].  

Since the initial and early stages of atherosclerosis are the time points when nutrition (e.g. 

zinc) modulation could have the most efficient effects, the research described in this 

dissertation focuses on early events of atherosclerosis, including endothelial cell 

activation in the in vitro studies and a more systemic profile of early events of 

atherosclerosis in the in vivo studies.  

One major link of the four chapters of this dissertation is the micronutrient zinc.  

In the current studies, the cells were made zinc deficient by treatment with the zinc 

chelators TPEN or DTPA.  TPEN is a membrane permeable zinc-specific chelator that 

decreases intracellular zinc concentrations by depleting zinc from both a cytoplasmic free 

zinc pool and a nuclear pool [184-186].  The chelation of cations other than zinc by 

TPEN is very low with the affinities of metal to TPEN: Zn2+ > Fe2+ > Mn2+ >> Ca2+ = 

Mg2+ [187].  In a previous study of our lab, cultured endothelial cells pre-treated with 

TPEN (2 μM) for 24 h were labeled with Zinquin ethyl ester, and the fluorescence that 

reflects biologically available labile zinc was measured, demonstrating that cellular labile 

zinc deficiency can be induced by exposure of endothelial cells to TPEN for 24 h [25].    

In the current in vitro study, the same duration of TPEN treatment (i.e. 24 h) but lower 

concentrations of TPEN (1.0 or 1.5 μM) were applied because 2 μM of TPEN would 

cause massive cell death in the vascular endothelial cell cultures at the treatment time 
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point of 24 h.  Therefore, the highest non-toxic concentrations of TPEN were chosen to 

perform these experiments on the endothelial cells.  Based on the observed biological 

effects caused by zinc chelation and supplementation as described in Chapter Two, the 

TPEN treatment should have reduced the intracellular labile zinc.  DTPA is a membrane 

impermeable chelator that decreases extracellular zinc concentrations [184].  DTPA is a 

potent chelator of zinc, but is not only specific for zinc [188].  A previous study has 

shown that in spite of  the detrimental effect of DTPA on thymidine incorporation in 3T3 

cells, it did not decrease the measurable cellular total zinc concentration, which may be 

the result of a decreased zinc concentration of only a small compartment of the cell, 

possibly the plasma membrane, that caused too small a change to be detected by total zinc 

analysis [188].  In the transient transfection-luciferase assay described in Chapter Two, 

the compromising effect of DTPA-induced zinc deficiency on the transactivation activity 

of PPARγ  was obvious despite the fact that the cellular zinc concentrations in RAVSMC 

were not measured.  Nevertheless, one major deficiency of the present in vitro study is 

the lack of determination of the intracellular zinc concentrations.  There are several ways 

to measure cellular zinc, with the most commonly used one being atomic absorption 

spectrometry, which measures total cellular zinc [189].  Fluorescence microscopy with 

the zinc-specific fluorescent probe FluoZin-3 can be used to quantify cellular labile zinc 

[190].   Recently, flow cytometry with FluoZin-3 has been employed to measure the 

concentrations of biologically active labile zinc in both a single cell and distinct cell 

populations [189].  Unlike the fluorescent probe Zinquin that was used in Hennig’s 

laboratory before to determine intracellular labile zinc, the FluoZin-3 does not seem to 

interact with zinc that is bound to proteins like metallothionein [189], therefore, this 

method has the advantage of measuring labile zinc more accurately.  Another novel way 

to measure intracellular exchangeable zinc is by using a fluorescence resonance energy 

transfer (FRET) based ratiometric zinc sensor to image and quantify zinc levels in resting 

eukaryotic cells [191].   In future in vitro zinc studies, it is important that the 

concentrations of intracellular labile zinc be routinely quantified using either the flow 

cytometric method or the ratiometric imaging method mentioned above, so that the 

observed biological effects caused by different cellular zinc status can be properly 

explained. 
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In the current in vivo study, the LDL-R-/- mice were made mildly zinc deficient by 

feeding zinc-deficient diets that contained 0.4 mg/kg (not 0 mg/kg) of zinc for a relatively 

short period.  Because zinc is such an important micronutrient involved in multiple life 

processes, it is important not to completely deplete zinc in these diets.  The small amount 

of zinc in the zinc-deficient diets helped to keep the animals from significant weight loss, 

which could otherwise constitute a confounding factor in the study.  It was still somewhat 

unexpected that the LDL-R-/- mice on the zinc-deficient diets did not gain any weight 

(Fig. 3.2).  Our previous feeding study applying the same type of diets on wild type (WT) 

mice showed that the zinc-deficient WT mice gained less weight than the zinc-adequate 

WT mice.  The failure of the zinc-deficient LDL-R-/- mice to gain weight in the current in 

vivo study suggests that this strain of mouse is more sensitive to zinc-depleted diets 

compared to the WT mice.  Furthermore, our preliminary studies showed that the zinc-

deficient mice always decreased their food intake compared to the zinc-adequate mice, 

which could partially explain their different patterns of body weight change.  Some of the 

biological effects observed in the current in vivo study could be associated with the 

different food intake and weight change in the zinc-deficient vs. the zinc-adequate mice.  

In addition, the plasma zinc concentrations did not reflect the dietary zinc intake in our 

study.  Plasma zinc concentration is not always a good indicator of body zinc levels.  For 

example, while plasma zinc was found to be normal in elderly patients with mild zinc 

deficiency, the zinc levels in granulocytes and lymphocytes were decreased compared to 

the younger control subjects [192].  Zinc redistribution is a well recognized phenomenon 

during acute-phase response to injury or infection, when zinc moves into the liver with 

reduced plasma zinc concentration [193].  Zinc redistribution also can exist between 

plasma and peripheral blood mononuclear cells [194].  Determination of labile zinc in 

leukocytes instead of plasma zinc may be a more precise way of indicating the body zinc 

level, and it also allows for the correlation of leukocyte zinc levels with immunological 

effects [189].   The length of the in vivo study was based on our previous research using 

the same animal model and a similar dietary regimen, which has demonstrated that zinc 

deficiency for four weeks is sufficient to increase plasma lipids and atherosclerotic 

markers [118].  A longer-term study may reveal a more robust outcome revealing the pro-

atherogenic effects of zinc deficiency and the anti-atherogenic properties of rosiglitazone, 
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and the interactions between zinc status and rosiglitazone in regulating the development 

of atherosclerosis as well.  

Oxidative stress links all the main signaling pathways studied in this dissertation, 

i.e. NF-κB, AhR, and PPAR. Oxidative stress plays a central role in atherosclerosis.  

ROS, the main source of oxidative stress, have a dual role in the vasculature.  ROS 

function as homeostatic signaling molecules that regulate cell growth and adaptation 

responses at physiological concentrations, however, they can cause cellular injury and 

death at higher concentrations.  The pathogenesis of atherosclerosis involves an 

imbalance between oxidative stress and antioxidant defense (including anti-oxidant 

enzymes and endogenous /exogenous anti-oxidants) that causes excessive ROS 

production  [195].  Either inadequate or excessive cellular zinc can induce oxidative 

stress by altering the expression and activity of anti-oxidant enzymes and/or increasing 

ROS production.  In the current study, zinc deficiency caused by TPEN chelation 

increased ROS generation in vascular endothelial cells (Fig. 2.1).  In this experiment 

however, zinc supplementation to the chelator containing media only partially rescued the 

zinc-deficiency-induced cellular oxidative stress, and surprisingly, zinc supplementation 

alone also induced cellular oxidative stress in endothelial cells (Fig. 2.1).  These 

observations were not in consistency with either the NF-κB DNA binding activity data 

(Fig. 2.2) or the COX-2 and E-selectin mRNA expression data (Fig. 2.3).  This could be 

due to the limitations of the DCF fluorescence method used for cellular oxidative stress 

measurement.  The DCF assay is sensitive to ONOO–, H2O2, and •OH, but not to NO, 

hypochlorous acid (HOCl) or O2
• – [196], therefore could not have reflected the whole 

cellular oxidative stress profile in the endothelial cells.  In order to determine cellular 

oxidative stress more accurately, future studies should combine the DCF assay with 

several other methods, such as the luminol- and lucigenin-amplified chemiluminescence 

assays which are sensitive to HOCl and O2
• –, respectively [196].  

Being a redox-sensitive transcription factor, NF-κB can be activated by oxidative 

stress [85]. Activation of NF-κB leads to up-regulation of downstream target genes, such 

as TNFα, and COX-2 [88, 119].   Expression of these inflammatory mediators can further 

increase cellular oxidative stress by generating ROS [44].  This positive feedback loop 

amplifies the oxidative stress signaling.  Activation of the AhR by certain ligands such as 
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2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can also lead to oxidative stress responses 

through induction of inflammatory mediators like TNFα and COX-2, modulation of 

antioxidant and prooxidant enzymes such as SOD and XO/XDH, and induction of 

cytochrome P450 [44].   Oxidative stress can also activate PPAR[197], which has anti-

inflammatory properties and would reduce oxidative stress [198-200] and/or prevent 

oxidative stress induced deleterious effects [201, 202].  Cellular oxidative stress thus 

cross-talks with multiple signaling pathways, resulting in synergism or antagonism 

among signaling pathways that depend on the overall oxidative stress/antioxidant balance 

within a cell (Fig. 6.1). 

Crosstalk between the transcription factors NF-κB, PPAR, and AhR as influenced 

by zinc nutritional status also helps to integrate the studies described in this dissertation 

(Fig. 6.1).  There is a bidirectional antagonism between the NF-κB and PPAR signaling 

pathways.  PPAR can repress the NF-κB pathway by physically interacting with the p50 

and p65 subunits of NF-κB, and by inducing the expression of IκB, the major inhibitor of 

NF-κB [21].  On the other hand, NF-κB activation can negatively regulate PPAR 

signaling by down-regulating the expression of PPAR mRNAs and inhibiting the 

transcriptional activity of PPAR proteins [203].  The interaction between PPAR and NF-

κB provides an efficient way of regulating multiple cellular events.  In the current study, 

zinc deficiency activates the NF-κB pathway possibly by increasing cellular oxidative 

stress, meanwhile, it suppresses the PPAR pathway by inhibiting PPAR expression and 

the transactivational activity of the PPAR proteins.  When cells are zinc deficient, the 

activation of NF-κB can further inhibit PPAR function and the suppressed PPAR 

signaling can contribute to further activation of the NF-κB and associated downstream 

inflammatory events.   

Similarly, physical interaction and mutual functional repression also exist 

between the NF-κB and AhR signaling pathways.  NF-κB activation can inhibit AhR 

dependent gene expression; conversely, ligand activation of AhR can also suppress 

transcriptional activation by NF-κB [204, 205].  The mutual repression is mediated by the 

physical interaction between the p65 subunit of NF-κB and AhR, and may also involve 

the roles of nuclear receptor coactivators p300/CBP and steroid receptor coactivator-1 
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(SRC-1).  Since both p300/CBP and SRC-1 serve as common coactivators of NF-κB and 

AhR for maximum transcriptional activation, a competition for coactivator binding is 

possible, which will lead to activation of one pathway and repression of the other 

pathway [204-206].  In the present study, zinc deficiency might impair the AhR pathway 

either directly by affecting the AhR translocation, cofactor recruitment, and/or AhR-XRE 

binding, or indirectly by activating the NF-κB pathway.  Likewise, during zinc deficiency 

the activation of NF-κB can further inhibit the AhR function and the compromised AhR 

signaling can intensify the activation of NF-κB and inflammation, eventually 

contributing to the pathology of atherosclerosis.   

One common finding in both the in vitro and the in vivo studies described in this 

dissertation is the requirement of adequate zinc for proper PPAR function.  Since there 

are so many zinc-finger containing proteins, it is possible that zinc deficiency can also 

alter functions of some other zinc-finger transcription factors in addition to PPAR.  

However, my data demonstrate that zinc deficiency decreases the protein expression of 

PPARα (Fig. 2.5B) but not of estrogen receptor (ER)α (see Appendix, Fig. VI), another 

zinc-finger transcription factor, in vascular endothelial cells.  This observation suggests 

some specificity of zinc deficiency for altering PPAR function, findings which are also 

supported by the reversibility studies with zinc supplementation. 

An interesting finding described in this dissertation is that zinc deficiency seems 

to protect against PCB77-induced inflammation in endothelial cells.  Since both PCB77 

[169] and zinc deficiency increases cellular oxidative stress, we initially thought that zinc 

deficiency could amplify PCB77-induced inflammatory responses.  However, the current 

data showed the opposite.  Specifically, PCB77-incuced CYP1A1 activity and expression 

(Fig. 5.1, 5.2), and up-regulation of adhesion molecules, such as vascular cell adhesion 

molecule-1 (VCAM-1) and E-selectin (see Appendix, Fig. VII), were all compromised 

during zinc-deficiency.  Since the PCB 77-induced endothelial cell inflammatory 

responses are mediated through the AhR-CYP1A pathway [62], one could anticipate that 

zinc ion could be required for some upstream events of the whole pathway, such as 

activation of the AhR-CYP1A1 pathway.  In other words, during zinc deficiency, the 

AhR-CYP1A1 activation gets inhibited, leading to inactivation of the downstream 

inflammatory responses as a consequence.  The inhibitory effect of zinc deficiency on the 
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non-toxic AhR ligand β-NF-induced CYP1A1 expression (Fig. 5.3) was supportive of 

this point.   

The findings described in this dissertation foster a number of important questions 

that could be addressed in future studies.  For example, the hitherto poorly understood 

upstream events in zinc deficiency-induced endothelial cell activation need to be 

clarified.   The relevant questions include, but are not limited to, 1) how does zinc 

deficiency induce oxidative stress in endothelial cells and which signaling pathways are 

involved, and 2) how does the increased oxidative stress activate NF-κB in endothelial 

cells and which kinases are involved.  Another question is the detailed mechanisms 

involved in zinc deficiency-induced inhibition of the AhR-CYP1 pathway in vascular 

endothelial cells.  In this aspect, future studies may address whether the translocation of 

AhR and/or ARNT, the coactivator recruitment, the AhR-XRE binding, and/or the 

transactivation activity of AhR are influenced by zinc deficiency in these cells. 

In conclusion, zinc nutrition can affect the pathology of inflammatory diseases 

such as atherosclerosis.  Zinc deficiency by itself constitutes a risk factor of 

atherosclerosis.  In addition, zinc deficiency can modify the biological outcomes of other 

risk factors of atherosclerosis such as coplanar PCBs, and of certain medicines such as 

TZDs.  The study described in this dissertation shows that zinc deficiency can intensify 

inflammatory events in vascular endothelial cells and the whole animal as well.  The 

mechanisms involved include inhibition of the anti-inflammatory signaling pathways, 

such as the PPAR, and activation of the pro-inflammatory pathways, such as the NF-κB, 

during zinc deficiency (Fig. 6.1). 

In general, data presented in this dissertation are novel and important for 

population groups at risk of zinc deficiency and exposure to environmental pollutants 

such as PCBs, and patients receiving therapy with TZDs.  The results shown also 

emphasize the importance of the micronutrient zinc in prevention of atherosclerosis and 

the importance of adequate dietary zinc in humans during treatment phases associated 

with diabetes and other cardiovascular risk factors.  
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Figure 6.1. Crosstalk between the NF-κB, PPAR, and AhR pathways during zinc 

deficiency. 

Zinc deficiency induces oxidative stress, which activates the NF-κB signaling pathway 

that leads to inflammation and atherosclerosis.  Meanwhile, zinc deficiency inhibits both 

PPAR and AhR signaling, blocking their inhibitory effects on NF-κB and further 

contributing to activation of NF-κB and inflammation.  Activation of NF-κB can 

intensify the oxidative stress signaling by generating more ROS, and is able to inhibit 

both PPAR and AhR pathways as well.  AhR activation can be pro-inflammatory by 

generating oxidative stress while activation of the anti-inflammatory PPAR can generally 

prevent the deleterious effects caused by oxidative stress.  

Copyright © Huiyun Shen 2008 
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Appendix 

 
Methods 

1. Primary endothelial cell culture 

 Establishing primary cell culture 

Endothelial cells were isolated from porcine pulmonary arteries by Dr. Bernhard 

Hennig at the Molecular and Cell Nutrition Laboratory, College of Agriculture, 

University of Kentucky, and subcultured in M-199 (Invitrogen Corporation, 

Carlsbad, CA) containing 10% (v/v) FBS (HyClone, Logan, UT). 

 Freezing cells  

1) Take one T75 cell culture flask with confluent endothelial cells.  Rinse the 

cells with 10 mL of Hanks and then add 1 mL of trypsin (0.05 %).  Place the 

flask in a CO2 incubator (37 °C, 5 % CO2) to facilitate trypsin digestion. 

2) When the cells are detached from the bottom of the flask, add 10 mL of 

M199/10 % FBS, suspend the cells by repeated pipetting, and transfer the cell 

suspension into a 15 mL conical tube followed by centrifugation at 1,200 rpm 

at 37 °C for 10 min. 

3) Gently decant supernatant, add 2 mL of freshly made freezing cocktail 

(M199/20 % FBS, 7 % DMSO) to resuspend the cells and transfer the cell 

suspension to two cryovials with 1 mL per vial.  Label the cryovials with 

passage, date, and operator, and keep them at -20 °C for 1 h and then at -80 °C 

overnight.  The cryovials are transferred to liquid nitrogen the next day for 

longtime storage.  

 Reviving cells  

1) Find one cryovial containing 1 mL of frozen endothelial cell suspension. 

2) Add 0.5 mL of M199/10 % FBS (pre-warmed to 37 °C) to the cryovial, 

pipette repeatedly and keep transferring the thawed cells into a 15 mL conical 

tube. 

3) After all cells are suspended in the 15 mL tube, centrifuge at 1,200 rpm for 10 

min at 37 °C.  
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4) Gently decant supernatant, and resuspend the cells in 10 mL of M199/10 % 

FBS, centrifuge at 1,200 rpm for 10 min at 37 °C.  Repeat this step one more 

time. 

5) Gently decant supernatant, resuspend the cells in 15 mL of M199/10 % FBS 

and transfer the cell suspension to a T75 flask.  Place the flask in a CO2 

incubator. 

6) Change the media 3 ~ 4 h later when the cells should have attached to the 

bottom of the flask. 

7) Change the media again the next day, and wait for two days until the cells are 

confluent.    

 

2. Cellular oxidative stress measurement 

1) Take one T-75 culture flask, after trypsin digestion add 60 mL of M199/10 % 

FBS.  Distribute 0.8 mL of the endothelial cell suspension into each well of a 

24 well plate. 

2) Incubate the cells for 48 h in CO2 incubator, then synchronize the cells (about 

90 % confluent) in M199/0 % FBS overnight followed by treatment in 

M199/1 % FBS for 24 h. 

3) Rinse the cells twice with HEPES buffered salt solution (HBSS) * (25 mM  

HEPES, 120 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 25 mM NaHCO3, 15 

mM glucose, pH 7.4) and incubate with 0.5 mL of HBSS containing 10 μM of 

2’,7’-dichlorodihydrofluorescein diacetate (H2DCF-DA)** at 37 °C for 30 min 

at dark. 

4) Wash the cells twice with HBSS and replace with 0.5 mL of HBSS. 

5) Measure the DCF fluorescence using a fluorescence microplate reader with 

excitation and emission wavelengths of 485 nm and 530 nm, respectively. 
* To make 100 mL of HBSS: dissolve 0.6g HEPES, 0.7g NaCl, 40 mg KCl, 26.5 

mg CaCl2, 0.21g NaHCO3, and 0.27g glucose in distilled H2O, adjust pH 7.4 with 

NaOH, and then sterilize by filtering.  



96 

** H2DCF-DA is added from a stock solution (10 mM): dissolve 2 mg H2DCF-DA 

in 0.4 mL EtOH, store at -80 °C at dark. 

 

3. RNA isolation  

 RNA isolation from endothelial cells 

Total RNA was isolated from endothelial cells using TRIzol Reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instruction. 

 RNA isolation from mouse aorta 

Total RNA was isolated from mouse aorta using RNeasy Fibrous Tissue Mini Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s instruction. 

 RNA isolation from mouse liver 

Total RNA was isolated from mouse liver using RNeasy Mini Kit (Qiagen, 

Valencia, CA) according to the manufacturer’s instruction.  

 

4. Measurement of RNA concentration 

1) Add 3 μL of RNA sample into 600 μL of RNase-free H2O.  Mix by repeated 

pipetting. 

2) Measure RNA concentration and A260/A280 value using a SmartSpec 3000 

Spectrophotometer (Bio-Rad, Hercules, CA).  

 

5. Reverse transcription (RT) reaction 

1) Dilute 1 μg of RNA in RNase-free H2O to 9.9 μL.  Heat the RNA at 70 °C for 

10 min in a MJ Mini 48-Well Personal Thermal Cycler (Bio-Rad, Hercules, 

CA) and put on ice. 
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2) Make a Master Mix using the Reverse Transcription System (Promega, 

Madison, WI): 

MgCl2 (25 mM):                                              4.0 μL 

Reverse Transcription 10 × Buffer:          2.0 μL 

dNTP Mix (10 mM):                                         2.0 μL  

RNasin Ribonuclease Inhibitor (40 u/μL):        0.5 μL  

Random Primers (500 μg/mL):                         1.0 μL 

AMV Reverse Transcriptase (10 u/μL):            0.6 μL 

Total volume                                                    10.1 μL 

3) Add 9.9 μL of the RNA into 10.1 μL of the Master Mix and mix well. 

4) RT reaction in the  MJ Mini 48-Well Personal Thermal Cycler: 25 °C for 10 

min → 42 °C for 60 min → 95 °C for 5 min → 4 °C for 5 min. 

5) Store the cDNA at -20 °C. 

                                                

6. Polymerase chain reaction (PCR)  

1) Prepare the PCR reaction mixture using Taq PCR Master Mix Kit (Qiagen, 

Valencia, CA) 

Distilled H2O:                                  10.5 μL 

Target gene sense (20 pM):               0.5 μL 

Target gene antisense (20 pM):         0.5 μL 

cDNA:                                               1.0 μL 

Taq PCR Master Mix*:                   12.5 μL 

Total volume                                    25.0 μL  

* containing 49 u/mL of Taq DNA Polymerase 

2) Run PCR reaction in the  MJ Mini 48-Well Personal Thermal Cycler 

• PCR programs for target genes: 

COX-2 

95 °C for 5 min, 1 cycle; 

95 °C for 30 sec → 52.3 °C for 30 sec → 72 °C for 30 sec, 26 cycles; 

72 °C for 7 min, 1 cycle. 
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E-selectin 

94 °C for 5 min, 1 cycle; 

94 °C for 1 min → 58.6 °C for 1 min → 72 °C for 1 min, 22 cycles; 

72 °C for 7 min, 1 cycle. 

CYP1A1 

94 °C for 4 min, 1 cycle; 

94 °C for 1 min → 58 °C for 1 min → 72 °C for 1 min, 29 cycles; 

72 °C for 7 min, 1 cycle. 

β-actin  

94 °C for 4 min, 1 cycle; 

94 °C for 1 min → 53 °C for 1 min → 72 °C for 1 min, 21 cycles; 

72 °C for 7 min, 1 cycle.  

 

7. Real-time PCR 

The real-time PCR reactions were performed using the ABI Prism 7300 Real 

Time PCR System (Applied Biosystems, Branchburg, NJ).  The quantification of 

PCR products was based on standard curves for the target gene and for the 

endogenous control, respectively.  A serial dilution of cDNA was made to 

establish the standard curve by assigning artificial numbers (e.g. 160, 80, 40, and 

20) of mRNA copy to each standard reaction.   

 CYBR Green gene expression assay for porcine PPARα 

1) Prepare the real-time PCR reaction mixtures: 

Nuclease-free H2O (Ambion, Austin, TX):                                              7.5 μL 

PPARα / β-actin forward (100 μM):                                                        1.5 μL 

PPARα / β-actin reverse (100 μM):                                                         1.5 μL 

CYBR Green PCR Master Mix (Applied Biosystems, 2×):                   12.5 μL 

cDNA:                                                                                                       2.0 μL 

Total volume                                                                                           25.0 μL 

2) Real-time PCR:  

95 °C for 10 min, 1 cycle; 
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95 °C for 15 sec → 60 °C for 1 min, 40 cycles.   

 

 TaqMan gene expression assays for mouse PPARγ, iNOS, MCP-1, CD36, and 

LPL 

1)   Prepare the real-time PCR reaction mixtures: 

Nuclease-free H2O (Ambion, Austin, TX):                                           9.25 μL 

Probe and Primers Mix* (Applied Biosystems, 20×):                           1.25 μL 

TaqMan Universal PCR Master Mix, No AmpErase UNG (AB, 2×):  12.5 μL 

cDNA:                                                                                                      2.0 μL 

Total volume                                                                                          25.0 μL  

2)   Real-time PCR:  

95 °C for 10 min, 1 cycle; 

95 °C for 15 sec → 60 °C for 1 min, 40 cycles.  

* The Probe and Primers Mixes were purchased from Applied Biosystems as 

TaqMan Gene Expression Assays pre-designed for different genes, i.e., mouse 

PPARγ, iNOS, MCP-1, CD36, and LPL.  Endogenous controls used were either 

Eukaryotic 18S rRNA or mouse ACTB, both of which are pre-developed TaqMan 

Assay reagents purchased from Applied Biosystems. 

 

8. Cellular protein extraction  

 Cellular protein extraction from endothelial cells* 

1) Rinse the endothelial monolayer twice with 5 mL of ice-cold PBS.  

2) Add 3 mL of PBS and scrape the cells into a 15 mL conical tube. 

3) Rinse dish with 3 mL of PBS and transfer into the same tube.  

4) Centrifuge at 2,500 rpm for 10 min at 4 °C. 

5) Decant the supernatant and resuspend the cells in 5 mL of PBS. 

6) Centrifuge at 2,500 rpm for 5 min at 4 °C. 

7) Carefully remove the supernatant and add 100 μL of Lysis Buffer ** [20 mM 

Tris-HCl (pH 7.4), 150 mM NaCl, 0.5 % (v/v) Triton X-100, 1 mM EDTA, 
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0.05 % (w/v) NP-40, 0.1 mg/mL PMSF, 1 mM Na3VO4, 2.5 μg/mL leupeptin, 

and 10 μg/mL pepstatin]. 

8) Vortex for 30 sec then put on ice for 2 min, repeat this step for 6 ~ 8 times. 

9) Incubate on ice for 30 ~ 60 min. 

10) Vortex and then centrifuge at 13,000 rpm for 15 min at 4 °C.  

11) Take the supernatant and make aliquots of it, quick freeze the aliquots on dry 

ice and store at -80 °C. 

* All steps were carried out at 4 °C or on ice. 

** Make Lysis Buffer (-) then add NP-40, PMSF, Na3VO4, leupeptin, and 

pepstatin before using:  

i)  To make 100 mL of Lysis Buffer (-): 2 mL Tris-HCl (1 M, pH 7.4) + 15 mL 

NaCl (1 M) + 5 mL Triton X-100 (10 %, v/v) + 1 mL EDTA (0.1M) + 73.75 mL 

distilled H2O. 

ii)  To make 1 mL of Lysis Buffer: 975 μL Lysis Buffer (-) + 5 μL NP-40 (10 % 

w/v) + 10 μL PMSF (10 mg/mL) + 5 μL Na3VO4 (200 mM) + 5 μL Protease 

Inhibitor Cocktail (0.5 mg/mL leupeptin, 2 mg/mL pepstatin). 

 Cellular protein extraction from liver tissue 

1) Thaw the Lysis Buffer* [50 mM Tris, 150 mM NaCl, 0.05 % (v/v) Triton X-

100, 0.1 mg/mL PMSF, 1 mM Na3VO4, 0.05 % (w/v) NP-40, 1 mM EDTA, 1 

mM EGTA, 2.5 μg/mL leupeptin, 10 μg/mL pepstatin A,  10 μg/mL aprotinin, 

and 2 mM DTT, pH 7.4] aliquot at 37 °C and add 50 μL/sample into a glass 

homogenization tube on ice. 

2) Cut frozen liver tissue on ice into approximately 2 mm3 pieces with scalpel 

and submerge into Lysis Buffer in the homogenizing tube immediately. 

3) Homogenize for 10 sec on ice and let stand for 30 min on ice. 

4) Transfer the homogenate into an eppendorf tube and centrifuge at 14,000 rpm 

for 30 min at 4 °C. 

5) Obtain the supernatant, vortex for 5 sec, make aliquots, quick freeze the 

aliquots on dry ice, and store at -80 °C.  
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* To make 100 mL of Lysis Buffer: 75 mL Tris (67mM)-NaCl (200 mM) (pH 

7.4) + 0.5 mL Triton X-100 (10 %, v/v) + 1 mL PMSF (10 mg/mL) + 0.5 mL 

Na3VO4 (200 mM) + 0.5 mL NP-40 (10 %, w/v) + 1 mL EDTA (100 mM) + 1 mL 

EGTA (100 mM) + 0.25 mL leupeptin (1 mg/mL) + 1 mL pepstatin A (1 mg/mL) 

+ 0.1 mL aprotinin (10 mg/mL) + 2 mL DTT (100 mM) + 17.15 mL distilled 

H2O. 

 

9. Measurement of  protein extract concentration 

Protein concentrations were measured spectrophotometrically by Bradford Assay.  

1) Prepare a series of protein standard, for example, 0, 2, 4, 6, 8, and 10 μg/mL 

of bovine serum albumin (BSA) using the Quick Start Bradford Protein Assay 

Kit (Bio-Rad, Hercules, CA).   

2) Dilute each protein sample by 500 fold, i.e., 2 μL of sample + 998 μL of 

Bradford Dye Reagent, mix and let stand for 5 min at room temperature. 

3) Measure A595 using a UV-1700PC spectrophotometer (Shimadzu Scientific 

Instruments, Columbia, MD) and get the protein concentrations. 

 

10. Western blot 

 Preparing samples 

1) Dilute protein samples with distilled H2O to 20 μL with the total amount of 

protein 20 ~ 25 μg each. 

2) Add 5 μL of 5× Sample Loading Buffer* each. 

3) Boil the samples at 95 ~100 °C for 5 ~7 min. 

4) Put the samples on ice until loading. 

* To make 8 mL of 5× Sample Loading Buffer: 1 mL 0.5 M Tris-HCl (pH 6.8) + 

0.8 mL 60 % glycerol + 1.6 mL 10 % SDS + 0.4 mL 2-mercaptoethanol + 0.4 mL 

1 % (w/v) bromophenol blue + 3.8 mL distilled H2O, make aliquots and store at -

80 °C. 

 Preparing the gel 

1) Separating/Resolving gel: lower gel (Table I). 
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2) Stacking gel: upper gel (Table I). 

 

Table I.  Preparation of SDS-PAGE gels 

 
Stacking gel 

5 % 

Separating gel 

8 % 

Separating gel 

10 % 

Distilled H2O 6.09 mL 5.34 mL 4.84 mL 

0.5 M Tris-HCl (pH 6.8) 2.5 mL - - 

1.5 M Tris-HCl (pH 8.8) - 2.5 mL 2.5 mL 

40 % Acrylamide/bis 1.25 mL 2 mL 2.5 mL 

10 % SDS 100 μL 100 μL 100 μL 

10 % APS 50 μL 50 μL 50 μL 

TEMED 10 μL 10 μL 10 μL 

Total volume 10 mL 10 mL 10 mL 

 

 Running the gel 

1) Prepare the Running Buffer*  

2) Put the gel in and load the samples and the protein marker (Bio-Rad, 

Hercules, CA). 

3) Run at 100 V until the bromophenol blue reaches the bottom of the separating 

gel. 

* To make 600 mL of 10 × Running Buffer: dissolve 18 g of Tris Base,  86.4 g of 

glycine, and 6 g of  SDS in distilled H2O.  To run the gel, dilute the 10 × Running 

Buffer into 1× Running Buffer with distilled H2O. 

 Transfer onto nitrocellulose membrane 

1) Prepare the Transfer Buffer**  

2) Make the “transfer sandwich” in ice-cold Transfer Buffer: from cathode to 

anode, place sponge, filter paper, gel, nitrocellulose membrane, filter paper, 

and sponge in turn. Close, properly put in apparatus. 

3) Add Transfer buffer, put in ice box and cover the whole thing with ice. 
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4) Run at 350 mA for 2h. 

** To make 800 mL of Transfer Buffer: 80 mL 10 × Running Buffer + 160 mL 

methanol + 560 mL distilled H2O, cover with parafilm and leave at -20 °C for 1 h 

before use. 

 Blocking  

      Block the membrane by gentle shaking in the Blocking Buffer [5 % non-fat milk 

in 1×TBST *** (50 mM Tris Base, 150 mM NaCl, 0.05 % Tween 20)] for 1h at 

room temperature. 

*** To make 1L of 10 × TBS: dissolve 60.5 g  Tris Base and 87.6 g  NaCl in 

distilled H2O, adjust pH to 7.5 with HCl, bring volume to 1L.  Dilute 100 mL 10 

× TBS with 900 mL distilled H2O to get 1L 1 × TBS.  To make 500 mL 1×TBST: 

500 mL 1 × TBS + 250 μL Tween 20. 

 Binding of the primary antibody 

1) Add certain amount of the primary antibody into the Blocking Buffer (e.g. 

1:1000 for COX-2, CYP1A1, and .1: 4000 for β-actin).  

2) Submerge the membrane in the buffer and gently shake overnight at 4 °C. 

3) Wash the membrane with the Blocking Buffer for 5 min, repeat 3 times. 

 Binding of the secondary antibody 

1) Add certain amount of the secondary antibody into the Blocking Buffer 

(usually a 1:3000 dilution). 

2) Submerge the membrane in the buffer and gently shake for 1h 15 min at room 

temperature. 

3) Wash the membrane with 1×TBST for 5 min, repeat 5 times. 

 Visualization 

1) Discard the TBST. 

2) Mix enhanced chemiluminescence (ECL) reagents (GE Healthcare, 

Piscataway, NJ): 1.5 mL reagent A + 1.5 mL reagent B. 

3) Distribute the mixture evenly by pipette on the membrane. Let sit for 1 min. 
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4) Dry the membrane gently on a Kimwipe and put the membrane into the plastic 

case in the cassette. 

5) Put in a piece of Blue Basic Autorad Film (ISC BioExpress, Kaysville, UT) 

and expose it for 1 ~ 15 min depending on the amount of target protein on the 

membrane. 

6) Develop the film. 

 

11.  Nuclear protein extraction  

 Nuclear protein extraction from endothelial cells* 

1) Rinse the endothelial monolayer twice with 5 mL of ice-cold PBS.  

2) Add 3 mL of PBS and scrape the cells into a 15 mL conical tube. 

3) Rinse dish with 3 mL of PBS and transfer into the same tube.  

4) Centrifuge at 2,500 rpm for 10 min at 4 °C. 

5) Resuspend the cells in 400 μL of buffer A [10 mM HEPES (pH 7.9), 10 mM 

KCl, 0.1 mM EDTA, 1 mM DTT, and 0.5 mM PMSF]. Incubate on ice for 15 

min.  

6) Add 25 μL of 10 % NP-40, mix, incubate on ice for about 5 min until 90 ~ 95 

% of the cells were lysed. 

7) Centrifuge at 14,000 rpm for 3 min at 4 °C. 

8) Gently remove the supernatant and resuspend the nuclear pellet in 20 ~50 μL 

of buffer B [20 mM HEPES (pH 7.9), 0.4 M NaCl, 1 mM EDTA, 1 mM DTT, 

and 1 mM PMSF] according to the cell number.   

9) Lyse the nuclei by shaking vigorously for 5 min at 4 °C. 

10) Centrifuge at 14,000 rpm for 10 min at 4 °C. 

11) Collect the supernatant, make aliquots, quick freeze the aliquots on dry ice, 

and store at -80 °C. 

* All steps were carried out at 4 °C or on ice.  

 Nuclear protein extraction from mouse liver  

Nuclear proteins were extracted using CelLytic NuCLEAR Extraction Kit 

(Sigma-Aldrich, St. Louis, MO) according to the manufacturer’s instruction.  
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12. Electrophoretic mobility shift assay (EMSA) 

EMSA assays were performed using LightShift® Chemiluminescent EMSA Kit 

(PIERCE, Rockford, IL) according to the manufacturer’s instruction.  

The supershift reaction mixtures contain 10 μL of antibodies specific for either 

PPARα or ΝF-κB p65 subunit.  

 

13. Zinc quantification in plasma, liver, and rosiglitazone solution 

Zinc concentrations in plasma, liver, and rosiglitazone solution were analyzed by 

ICP mass spectrometry by Dr. Thomas Mawhinney at the Agricultural 

Experiment Station Chemical Laboratories, University of Missouri. 

 

14.  Measurement of plasma cytokines/chemokines concentrations 

Concentrations of plasma IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-17, 

TNFα,  and MCP-1 were measured using Mouse Cytokine/Chemokine 

LINCOplex kit (LINKO Research Inc., St. Louis, MO) according to the 

manufacturer’s instruction.  Signal detection and data analysis using Luminex 100 

(Luminex Corporation, Austin, TX) and Multiplex Data Analysis Software 1.0 

(Upstate USA, Inc., Chicago, IL) were performed by Jason Stevens at the Center 

for Oral Health Research, University of Kentucky.  

 

15.  Measurement of plasma cholesterol concentrations 

Plasma total cholesterol content was measured using Wako Cholesterol E 

Enzymatic Kit (Wako Chemicals USA, Inc., Richmond, VA) according to the 

manufacturer’s instruction. 

.   

16.  Fast-performance liquid chromatography (FPLC) 

Plasma cholesterol distribution in different lipoprotein fractions was measured 

using FPLC by Jessica Moorleghen at the Cardiovascular Research Center, 

University of Kentucky.   
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17.  Analysis of plasma fatty acids  

1) Prepare butylated hydroxytoluene* (BHT, 100 μg/mL) in Folch Extraction 

Mixture (chloroform: methanol = 2:1): 

* To make 420 mL of BHT (100 μg/mL):  280 mL of chloroform + 140 mL of 

methanol + 42 mg of BHT. 

2) Prepare Standard [heptadecanoic acid (17:0, 5 mg/mL)]: dissolve 11.8 mg of 

17:0 in 2.36 mL of methanol. 

3) 50 μL plasma sample + 5 μL Standard (5 mg/mL) + 1 mL BHT (100 μg/mL), 

vortex. 

4) Move to a glass tube, add 1 mL of distilled H2O, vortex. 

5) Centrifuge at 2,000 rpm for 10 min at room temperature. 

6) Take chloroform (bottom) phase to a reaction tube. 

7) Dry with N2. 

8) Add 100 μL of chloroform to dissolve sample. 

9) Add 1 mL of boron trifluoride-methanol solution (BF3). 

10)  Incubate at 55 °C overnight. 

11)  Move to a glass tube and add 1mL of distilled H2O and 1mL of chloroform, 

vortex. 

12)  Centrifuge at 2,000 rpm for 10 min at room temperature. 

13)  Take chloroform (bottom) phase to a fresh glass tube. 

14)  Dry with N2. 

15)  Add 500 μL of chloroform, shake, and transfer to a brown glass bottle, seal. 

16)  Plasma fatty acids profile was determined by gas chromatography by Dr. 

Xiang-an Li at the Department of Pediatrics, University of Kentucky. 

 

18.  Ethoxyresorufin-o-deethylase (EROD) assay 

 Preparing stock solutions 

1) Resorufin (RR, 50 μM) in methanol. 

• Dissolve 0.0587 g of RR in 5 mL of methanol to get 50 mM of RR. 

• Make a 1:1000 dilution of the RR (50 mM) with methanol to get 50 μM of 

RR. 
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• Store at -20 °C in brown bottle with lid wrapped in parafilm. 

2) Fluorescamine (0.6 mg/mL) in acetone. 

• Dissolve 30 mg of fluorescamine in 50 mL of acetone.   

• Store at -20 °C in brown bottle with lid wrapped in parafilm 

3) 7-ethoxyresorufin (7ER, saturated) in methanol. 

• Add a few crystals of 7ER to 2 mL of methanol, warm with hot water, 

vortex and settle.  A saturated methanol solution of 7ER is around 400 

μM. 

• Make triplicate 1:100 dilutions in PBS (e.g. 10 μL 7ER + 990 μL of PBS); 

read absorbance of each dilution at 482 nm (A482). 

• Determine the concentration of 7ER using the equation: Con7ER (mM) = 

A482 × 100 / E*. 

                        * E (excitation coefficient) = 22.5 mM-1 cm-1. 

• Store at -20 °C in brown bottle with lid wrapped in parafilm. 

4) BSA (2 mg/mL) in PBS.  

• Dissolve 20 mg of BSA in 10 mL of PBS. 

• Make aliquots and store at -20 °C. 

 Preparing working solutions  

1) RR (15 μM): 150 μL of 50 μM RR + 350 μL of PBS.  

2) 7ER (9.4 μM): make a working solution using methanol according the 

concentration of the stock solution.  

3)  Warm up the PBS to 37 °C. 

 Preparing the 48-well standard plate  

Pipette the following to the standard wells (Table II): 

1) PBS: 135, 124, 114, 93, 71, 50 μL per well. 

2) BSA (2 mg/mL): 0, 10, 20, 40, 60, 80 μL per well, corresponding to 0, 20, 40, 

80, 120,160 μg per well. 

3) RR (15 μM): 0, 0.5, 1, 2, 4, 5 μL per well, corresponding to 0, 7.5, 15, 30, 60, 

75 pmol per well. 
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Table II. Preparation of 48-well standard plate for EROD assay 

PBS 135μl 
BSA 0μl 
RR 0μl 

PBS 135μl 
BSA 0μl 
RR 0μl 

PBS 135μl
BSA 0μl 
RR 0μl 

PBS 135μl
BSA 0μl 
RR 0μl 

PBS 135μl
BSA 0μl 
RR 0μl 

PBS 135μl
BSA 0μl 
RR 0μl 

PBS 135μl 
BSA 0μl 
RR 0μl 

PBS 135μl
BSA 0μl 
RR 0μl 

PBS 124μl 
BSA 10μl 
RR 0.5μl 

PBS 124μl 
BSA 10μl 
RR 0.5μl 

PBS 124μl
BSA 10μl 
RR 0.5μl 

PBS 124μl
BSA 10μl 
RR 0.5μl 

PBS 124μl
BSA 10μl 
RR 0.5μl 

PBS 124μl
BSA 10μl 
RR 0.5μl 

PBS 124μl 
BSA 10μl 
RR 0.5μl 

PBS 124μl
BSA 10μl 
RR 0.5μl 

PBS 114μl 
BSA 20μl 
RR 1μl 

PBS 114μl 
BSA 20μl 
RR 1μl 

PBS 114μl
BSA 20μl 
RR 1μl 

PBS 114μl
BSA 20μl 
RR 1μl 

PBS 114μl
BSA 20μl 
RR 1μl 

PBS 114μl
BSA 20μl 
RR 1μl 

PBS 114μl 
BSA 20μl 
RR 1μl 

PBS 114μl
BSA 20μl 
RR 1μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 93μl 
BSA 40μl 
RR 2μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 71μl 
BSA 60μl 
RR 4μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

PBS 50μl 
BSA 80μl 
RR 5μl 

 

 Preparing the 48-well cell plates 

1) Remove exposure media from the cells. 

2) Rinse the cells with 300 μL of PBS, and replace with 135 μL of PBS. 

 Reaction and Reading 

1) Add 50 μL of 7ER working solution to all standard and cells wells 

2) Place plate immediately into a Cytofluor 4000 plate reader (PE Biosystems, 

Foster City, CA) and start reading (measuring EROD). 

• Program for the plate reader: 

      Excitation: 530 nm; Emission: 590 nm. 

      Run 10 cycles 

Sensitivity: choose 15 or 16.   
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On the Cytofluor choose 2 scans/cycle, gains of 50 and 60, and 3 

reads/well. 

3) Go to kinetics menu on Cytofluor and check for a linear rate.  The reaction 

should be linear for the first 10 to 15 minutes.  Save files to Excel. 

4) Remove the plate from the plate reader and add 100 μL of fluorescamine (0.6 

mg/mL) to all wells.  This will stop the reaction and develops the protein 

signal. 

5) Create a new file for the protein measurements 

• Program for the plate reader: 

Excitation: 409 nm; Emission: 460 nm. 

Sensitivity: same as used for measuring EROD 

 Calculations 

1) Get the following parameters for each well:  

• Slope of EROD  

• Protein amount  

• Slope/Protein  

2) Average of replicate wells = AFU*/min/mg 

*AFU, absorbance fluorescence units 

3) Convert to mole numbers of RR: 

(AFU/min/mg)/(AFU/pmoles RR) = pmol/min/mg 
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Additional data 
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Figure I. Effect of zinc status on iNOS gene expression in abdominal aorta of low-fat 

diet fed LDL-R-/- mice. 

The vertical axis represents relative units, calculated as the ratio of the copy number of 

iNOS over the copy number of 18S rRNA, the endogenous control.  Values are means ± 

SEM, n = 6-7.  Means without a common letter differ (a > b), P < 0.05. 
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Figure II. Effects of dietary zinc status and rosiglitazone on MT1 mRNA expression 

in LDL-R-/- mice. 

The vertical axis represents relative units, calculated as the ratio of the copy number of 

MT1 over the copy number of β-actin, the endogenous control.  Values are means ± 

SEM, n = 7-10.  Zn × RSG interaction was not significant (P > 0.05). 
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Figure III. Effects of dietary zinc status and rosiglitazone on PPARγ  gene expression 

in LDL-R-/- mice. 

The vertical axis represents relative units, calculated as the ratio of the copy number of 

PPARγ over the copy number of β-actin, the endogenous control.  Values are means ± 

SEM, n = 7-9.  Zn × RSG interaction was not significant (P > 0.05). 
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Figure IV.  Dose-response relationship between PCB77 and CYP1A activity in 

vascular endothelial cells*. 

CYP1A activity was measured by EROD assay.  Endothelial cells were exposed to 

increasing concentrations of PCB77 (0, 0.0004, 0.004, 0.04, 0.4, 4, and 8 μM) for 24 

hours.  n = 8.   

* The data were contributed by Dr. Xabier Arzuaga at the University of Kentucky 

Molecular and Cell Nutrition Laboratory (Hennig’s laboratory).  
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Figure V.  Effects of cellular zinc status and PCB77 on the AhR protein expression 

in vascular endothelial cells. 

Similar to Figure 5.1, endothelial cells were exposed to vehicle control, TPEN, PCB77 

(3.4 μM), TPEN plus PCB77, or TPEN with zinc supplementation (20 μM) plus PCB77 

for 24 hours.  The values are ratios of the densitometric units of AhR over those of β-

Actin.  Bars with different letters (a, b) are statistically different from each other (P < 

0.05).  n = 3.  The gel data are a representative of the typical outcome of three repeated 

western blot experiments. 

 

β-actin 
AhR 



115 

0

20

40

60

80

100

120

Control TPEN TPEN + Zn Zn

ER
α

 P
ro

te
in

 

 
 
 

 

Figure VI.  Zinc deficiency does not affect estrogen receptor (ER)α protein 

expression in vascular endothelial cells. 

Endothelial cells were exposed to vehicle control (ethanol, 0.075 %), TPEN (1.5 μM), 

TPEN (1.5 μM) plus Zn (20 μM), or Zn (20 μM) for 24 h.  ERα protein expression was 

measured by Western blot.  The values are ratios of the densitometric units of ERα over 

those of β-actin, the endogenous control, expressed as percentage of control.  Values are 

means ± SEM, n = 4.  The gel data are a representative of the typical outcome of four 

repeated Western Blot experiments. 
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Figure VII.  Zinc deficiency compromises PCB77-induced VCAM-1 and E-selectin 

mRNA expression in vascular endothelial cells 

Similar to Figure 5.1, endothelial cells were exposed to vehicle control, TPEN, PCB77 

(3.4 μM), TPEN plus PCB77, or TPEN with zinc supplementation (20 μM) plus PCB77 

for 24 hours.  The values are ratios of the densitometric units of VCAM-1 or E-selectin 

over those of β-actin.  Bars with different letters (a, b, c for VCAM-1 and a’, b’, c’, d’ for 

E-selectin) are statistically different from each other (P < 0.05).  n = 3.  The gel data are a 

representative of the typical outcome of three repeated RT-PCR experiments. 
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