74 research outputs found

    Changes in aroma composition of blackberry wine during fermentation process

    Get PDF
    The study aimed at investigating the influence of fermentation (primary and secondary) on aroma composition of blackberry wine. Gas chromatography-mass spectrometry (GC-MS) was applied to quantify the compounds relevant to sparkling wine aroma. Investigation on this study revealed that a number of aroma components in raw material (55 in numbers), raw wine (54 in numbers), and aging wine (50 in numbers) were identified. In addition, 9 new aroma components such as octanoate, benzenepropanoic acid ethyl ester, ethyl benzoate, dodecyl ethyl, n-propanol, n-butanol, d-citronellol, benzaldehyde, and cedrol were detected in natural aging wine which appeared during secondary fermentation according to total peak areas of 4.69%. These findings reveal that natural aging is very important to aroma components formation of blackberry wine.Key words: Blackberry, gas chromatography, primary fermentation, secondary fermentation

    Electronic band reconstruction across the insulator-metal transition in colossal magnetoresistive EuCd2P2

    Full text link
    While colossal magnetoresistance (CMR) in Eu-based compounds is often associated with strong spin-carrier interactions, the underlying reconstruction of the electronic bands is much less understood from spectroscopic experiments. Here using angle-resolved photoemission, we directly observe an electronic band reconstruction across the insulator-metal (and magnetic) transition in the recently discovered CMR compound EuCd2P2. This transition is manifested by a large magnetic band splitting associated with the magnetic order, as well as unusual energy shifts of the valence bands: both the large ordered moment of Eu and carrier localization in the paramagnetic phase are crucial. Our results provide spectroscopic evidence for an electronic structure reconstruction underlying the enormous CMR observed in EuCd2P2, which could be important for understanding Eu-based CMR materials, as well as designing CMR materials based on large-moment rare-earth magnets.Comment: 6 pages, 4 figure

    Do human work interruptions bring positive affective responses?—Based on the mediation of coping potential and the moderation of polychronicity

    No full text
    This research aims to investigate the impact of human work interruptions on positive affective responses and their underlying mechanisms in the Chinese context. In the first stage, this study conducted face-to-face semi-structured interviews with 29 employees representing diverse industries. The grounded theory research method was used to extract the construct of human work interruption, identify its core attributes, and capture the naturally emerging storyline of “human work interruptions - coping potential - polychronicity - positive affective responses”. In the second stage, a theoretical model was constructed and validated using 362 questionnaires. The results indicate that in the Chinese context: (1) human work interruptions can trigger positive affective responses; (2) coping potential mediates the relationship between human work interruptions and positive affective responses; (3) when individuals have a higher level of polychronicity, the impact of human work interruptions on positive affective responses via coping potential is enhanced. The findings of this study effectively address the hypothesis of the “positive aspect” of work interruptions proposed by management scholars and contribute to the existing literature on work interruptions and positive affective responses. Moreover, this research provides practical and theoretical implications for managers and employees in managing and coping with human work interruptions

    Optimized MALDI-TOF MS Strategy for Characterizing Polymers.

    Get PDF
    In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plays an essential role in the analysis of polymers. To acquire a more reliable strategy for polymer profiling, we characterized four representative polymers including polyethylene glycol 6000, polyvinylpyrrolidone K12, polymer polyol KPOP-5040, and polyether polyol DL-4000. The preparation methods of these four polymer samples have been optimized from six aspects, including matrix, cationization reagent, solvent, mixing ratio of cationization reagent to polymer, mixing ratio of matrix to polymer, and laser intensity. After investigating the effects of seven commonly used matrices on the ionization efficiency of four polymers, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) was found to be the only matrix suitable for the analysis of all the four polymers. Our experimental results suggested that different polymers showed a certain preference for different cationization reagents. For example, the polymer polyol KPOP-5040 was suitable for sodium iodide as the cationization reagent, while polyvinylpyrrolidone K12 was more suitable for silver trifluoroacetate (AgTFA). For the choice of solvent, tetrahydrofuran is a reagent with rapid evaporation and a wide range of dissolution which can achieve the best results for the analysis of four polymers. The optimized method was successfully applied to the identification of DSPE-PEG-NH2 with different polymerized degrees. This MALDI-TOF strategy potentially provided the supplementary function through the polymer's application in biomedical and visible probing

    Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent

    Get PDF
    Background: Panax ginseng root is used in traditional oriental medicine for human health. Its main active components such as saponins and polysaccharides have been widely evaluated for treating diseases, but secondary active components such as oligosaccharides have been rarely studied. This study aimed to assess the impact of water-soluble ginseng oligosaccharides (WGOS), which were isolated from the warm-water extract of Panax ginseng root, on scopolamine-induced cognitive impairment in mice and its antineuroinflammatory mechanisms. Methods: We investigated the impact of WGOS on scopolamine-induced cognitive impairment in mice by using Morris water maze and novel object recognition task. We also analyzed the impact of WGOS on scopolamine-induced inflammatory response (e.g., the hyperexpression of proinflammatory cytokines IL-1β and IL-6 and astrocyte activation) by quantitative real-time polymerase chain reaction and glial fibrillary acid protein (GFAP) immunohistochemical staining. Results: WGOS pretreatment protected against scopolamine-induced learning and memory deficits in the Morris water maze and in the novel object recognition task. Furthermore, WGOS pretreatment downregulated scopolamine-induced hyperexpression of proinflammatory cytokines interleukin (IL)-1β and IL-6 mRNA and astrocyte activation in the hippocampus. These results indicate that WGOS can protect against scopolamine-induced alterations in learning and memory and inflammatory response. Conclusion: Our data suggest that WGOS may be beneficial as a medicine or functional food supplement to treat disorders with cognitive deficits and increased inflammation

    A Multi-Omics Study of Human Testis and Epididymis

    No full text
    The human testis and epididymis play critical roles in male fertility, including the spermatogenesis process, sperm storage, and maturation. However, the unique functions of the two organs had not been systematically studied. Herein, we provide a systematic and comprehensive multi-omics study between testis and epididymis. RNA-Seq profiling detected and quantified 19,653 in the testis and 18,407 in the epididymis. Proteomic profiling resulted in the identification of a total of 11,024 and 10,386 proteins in the testis and epididymis, respectively, including 110 proteins that previously have been classified as MPs (missing proteins). Furthermore, Five MPs expressed in testis were validated by the MRM method. Subsequently, multi-omcis between testis and epididymis were performed, including biological functions and pathways of DEGs (Differentially Expressed Genes) in each group, revealing that those differences were related to spermatogenesis, male gamete generation, as well as reproduction. In conclusion, this study can help us find the expression regularity of missing protein and help related scientists understand the physiological functions of testis and epididymis more deeply

    Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean

    No full text
    Abstract Background Osmotic stress is a major abiotic stress limiting crop production by affecting plant growth and development. Although previous reports discovered that methane (CH4) has a beneficial effect on osmotic stress, the corresponding downstream signal(s) is still elusive. Results Polyethylene glycol (PEG) treatment progressively stimulated the production of CH4 in germinating mung bean seeds. Exogenous CH4 and sodium nitroprusside (SNP) not only triggered nitric oxide (NO) production in PEG-stressed plants, but also alleviated the inhibition of seed germination. Meanwhile, amylase activity was activated, thus accelerating the formation of reducing sugar and total soluble sugar. Above responses could be impaired by NO scavenger(s), suggesting that CH4-induced stress tolerance was dependent on NO. Subsequent tests showed that CH4 could reestablish redox balance in a NO-dependent fashion. The addition of inhibitors of the nitrate reductase (NR) and NO synthase in mammalian (NOS), suggested that NR and NOS-like protein might be partially involved in CH4-alleviated seed germination inhibition. In vitro and scavenger tests showed that NO-mediated S-nitrosylation might be associated with above CH4 responses. Conclusions Together, these results indicated an important role of endogenous NO in CH4-enhanced plant tolerance against osmotic stress, and NO-regulated redox homeostasis and S-nitrosylation might be involved in above CH4 action

    Sn-Doping and Li2SnO3 Nano-Coating Layer Co-Modified LiNi0.5Co0.2Mn0.3O2 with Improved Cycle Stability at 4.6 V Cut-off Voltage

    No full text
    Nickel-rich layered LiNi1−x−yCoxMnyO2 (LiMO2) is widely investigated as a promising cathode material for advanced lithium-ion batteries used in electric vehicles, and a much higher energy density in higher cut-off voltage is emergent for long driving range. However, during extensive cycling when charged to higher voltage, the battery exhibits severe capacity fading and obvious structural collapse, which leads to poor cycle stability. Herein, Sn-doping and in situ formed Li2SnO3 nano-coating layer co-modified spherical-like LiNi0.5Co0.2Mn0.3O2 samples were successfully prepared using a facile molten salt method and demonstrated excellent cyclic properties and high-rate capabilities. The transition metal site was expected to be substituted by Sn in this study. The original crystal structures of the layered materials were influenced by Sn-doping. Sn not only entered into the crystal lattice of LiNi0.5Co0.2Mn0.3O2, but also formed Li+-conductive Li2SnO3 on the surface. Sn-doping and Li2SnO3 coating layer co-modification are helpful to optimize the ratio of Ni2+ and Ni3+, and to improve the conductivity of the cathode. The reversible capacity and rate capability of the cathode are improved by Sn-modification. The 3 mol% Sn-modified LiNi0.5Co0.2Mn0.3O2 sample maintained the reversible capacity of 146.8 mAh g−1 at 5C, corresponding to 75.8% of its low-rate capacity (0.1C, 193.7mAh g−1) and kept the reversible capacity of 157.3 mAh g−1 with 88.4% capacity retention after 100 charge and discharge cycles at 1C rate between 2.7 and 4.6 V, showing the improved electrochemical property

    Spin-valve-like magnetoresistance in a Ni-Mn-In thin film

    No full text
    Spin valve devices, the resistive state of which is controlled by switching the magnetization of a free ferromagnetic layer with respect to a pinned ferromagnetic layer, rely on the scattering of electrons within the active medium to work. Here we demonstrate spin-valve-like effect in the Ni-Mn-In thin films, which consists of a ferromagnetic phase embedded in an antiferromagnetic matrix. Through transport and magnetic measurements, we confirm that scattering at the interfaces between the two phases gives rise to a unidirectional anisotropy and the spin-valve-like effect in this system. The magnitude of the spin-valve-like magnetoresistance (about 0.4% at 10 K) is stable within the temperature range of 10–400 K. The low- and high-resistance states cannot be destroyed even under a high magnetic field of 100 kOe. This finding opens up a way of realizing the spin valve effect in materials with competing ferromagnetic and antiferromagnetic interactions, where the interface between these phases acts as the active medium.Published versio
    • …
    corecore