20 research outputs found

    Derivation and validation of a prognostic model for predicting in-hospital mortality in patients admitted with COVID-19 in Wuhan, China:the PLANS (platelet lymphocyte age neutrophil sex) model

    Get PDF
    Background Previous published prognostic models for COVID-19 patients have been suggested to be prone to bias due to unrepresentativeness of patient population, lack of external validation, inappropriate statistical analyses, or poor reporting. A high-quality and easy-to-use prognostic model to predict in-hospital mortality for COVID-19 patients could support physicians to make better clinical decisions. Methods Fine-Gray models were used to derive a prognostic model to predict in-hospital mortality (treating discharged alive from hospital as the competing event) in COVID-19 patients using two retrospective cohorts (n = 1008) in Wuhan, China from January 1 to February 10, 2020. The proposed model was internally evaluated by bootstrap approach and externally evaluated in an external cohort (n = 1031). Results The derivation cohort was a case-mix of mild-to-severe hospitalized COVID-19 patients (43.6% females, median age 55). The final model (PLANS), including five predictor variables of platelet count, lymphocyte count, age, neutrophil count, and sex, had an excellent predictive performance (optimism-adjusted C-index: 0.85, 95% CI: 0.83 to 0.87; averaged calibration slope: 0.95, 95% CI: 0.82 to 1.08). Internal validation showed little overfitting. External validation using an independent cohort (47.8% female, median age 63) demonstrated excellent predictive performance (C-index: 0.87, 95% CI: 0.85 to 0.89; calibration slope: 1.02, 95% CI: 0.92 to 1.12). The averaged predicted cumulative incidence curves were close to the observed cumulative incidence curves in patients with different risk profiles. Conclusions The PLANS model based on five routinely collected predictors would assist clinicians in better triaging patients and allocating healthcare resources to reduce COVID-19 fatality

    Local Formability of Different Advanced High Strength Steels

    No full text
    Funding Information: Hesong Wang acknowledges the China Scholarship Council (No. 201906080029) providing an opportunity to study in Aachen, Germany. Simulations were performed with computing resources granted by RWTH Aachen University under project . Publisher Copyright: © 2022 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.Medium-Mn steel (MMnS) is a promising candidate of the third generation of advanced high strength steels (AHSS), which can provide superior tensile properties. To consider the edge crack issues, the local formability, as an indicator of fracture resistance, of the MMnS needs to be quantitatively evaluated for their potential application to industries. Thus, the local formability of two different MMnS is evaluated by the forming limits at fracture using the damage mechanics approaches and compared with a DP1000 steel in this study. Despite the superior tensile properties, the local formability of the investigated MMnS is worse than the DP1000, which is characterized by the fracture strain under different stress states. Therefore, for the assessment of their potential application in automotive industries, it is recommended that more attention should be paid to the local formability and fracture resistance of these advanced high strength steels.Peer reviewe

    Numerical and experimental analysis of chloride and iodide transports in concrete under natural diffusion

    No full text
    This study investigates the natural diffusion laws of chloride ions and iodide ions in concrete and proposes their correlations during the process of diffusion. By measuring the free ion concentration at different exposure times and diffusion depths, time-varying laws related to the ion diffusion coefficient D and surface ion concentration Cs were proposed. The linear proportional relationship between two kinds of ions is explored and fills the relevant research gaps. Natural diffusion models of ions are established via the finite element software COMSOL and the adjustment parameters K and λ are innovatively proposed. Thus, this enables the effective conversion of the ion resistance permeability coefficients measured by the RCM and RIM methods, especially for the concrete containing chloride. The results of numerical calculation and experimental measurement have a strong correlation. Furthermore, a two-dimensional concrete model with different aggregates is used to simulate the ion diffusion characteristics. It is confirmed that the increase in aggregate volume ratio and tortuosity inhibited ion diffusion, and the ion concentration in the local area was greatly reduced

    DataSheet_1_Minimal residual disease guided radical chemoradiotherapy combined with immunotherapy after neoadjuvant immunochemotherapy followed by adjuvant immunotherapy for esophageal squamous cell cancer (ECMRD-001): a study protocol for a prospective cohort study.doc

    No full text
    IntroductionFor locally advanced, inoperable esophageal cancer, concurrent chemoradiotherapy (CCRT) becomes the norm. Combining immunotherapy with radiotherapy has been shown to improve efficacy. Circulating tumor DNA (ctDNA) is a strong predictor of effectiveness and tumor recurrence and is indicative of minimal residual disease (MRD). Patients with inoperable stage II-III esophageal squamous cell carcinoma (ESCC) are enrolled in the ECMRD-001 trial to evaluate changes in MRD status before and after CCRT combined with immunotherapy and adjuvant immunotherapy following neoadjuvant immunochemotherapy.Methods and analysisThe ECMRD-001 trial is a prospective cohort study. Eligible patients will receive radical concurrent chemoradiotherapy combined with immunotherapy after neoadjuvant immunochemotherapy, followed by adjuvant immunotherapy for at least one year. Follow-up will be up to three years. MRD-related blood and tissue samples and T-cell immunohistobank related blood and tissue samples collected before, during and after treatment and follow-up will be grouped into sample collection time points. The relationship between MRD status at different time points and treatment efficacy is the primary outcome. Correlation between MRD status and immune microenvironment, radiotherapy dose, and tumor recurrence are the secondary outcomes. Examination of ctDNA mutations is the exploratory outcome.DiscussionctDNA-based MRD may be a potential predictive marker for the efficacy and tumor recurrence of inoperable ESCC patients. Elevated ctDNA-MRD may predict tumor recurrence earlier than imaging. ctDNA-based MRD analysis and ctDNA-based MRD guided diagnosis and treatment should be implemented into clinical practice to improve efficacy and reduce tumor recurrence of inoperable stage II-III ESCC.Trial registrationThe ECMRD-001 study has been registered at ClinicalTrials.gov as NCT05952661 (July 19, 2023), https://classic.clinicaltrials.gov/ct2/show/NCT05952661.</p

    CT-derived extracellular volume and liver volumetry can predict posthepatectomy liver failure in hepatocellular carcinoma

    No full text
    Abstract Objectives Posthepatectomy liver failure (PHLF) is a severe complication of liver resection. We aimed to develop and validate a model based on extracellular volume (ECV) and liver volumetry derived from computed tomography (CT) for preoperative predicting PHLF in resectable hepatocellular carcinoma (HCC) patients. Methods A total of 393 resectable HCC patients from two hospitals were enrolled and underwent multiphasic contrast-enhanced CT before surgery. A total of 281 patients from our hospital were randomly divided into a training cohort (n = 181) and an internal validation cohort (n = 100), and 112 patients from another hospital formed the external validation cohort. CT-derived ECV was measured on nonenhanced and equilibrium phase images, and liver volumetry was measured on portal phase images. The model is composed of independent predictors of PHLF. The under the receiver operator characteristic curve (AUC) and calibration curve were used to reflect the predictive performance and calibration of the model. Comparison of AUCs used the DeLong test. Results CT-derived ECV, measured future liver remnant (mFLR) ratio, and serum albumin were independent predictors for PHLF in resectable HCC patients. The AUC of the model was significantly higher than that of the ALBI score in the training cohort, internal validation cohort, and external validation cohort (all p < 0.001). The calibration curve of the model showed good consistency in the training cohort and the internal and external validation cohorts. Conclusions The novel model contributes to the preoperative prediction of PHLF in resectable HCC patients. Critical relevance statement The novel model combined CT–derived extracellular volume, measured future liver remnant ratio, and serum albumin outperforms the albumin–bilirubin score for predicting posthepatectomy liver failure in patients with resectable hepatocellular carcinoma. Key points • CT-derived ECV correlated well with the fibrosis stage of the background liver. • CT-derived ECV and mFLR ratio were independent predictors for PHLF in HCC. • The AUC of the model was higher than the CT-derived ECV and mFLR ratio. • The model showed a superior predictive performance than that of the ALBI score. Graphical Abstrac
    corecore