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Wuhan, China: the PLANS (platelet
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Jiong Li'", Yuntao Chen®", Shujing Chen®', Sihua Wang®, Dingyu Zhang®, Junfeng Wang®, Douwe Postmus?,
Hesong Zeng’, Guoyou Qin®, Yin Shen”’, Jinjun Jiang® and Yongfu Yu®"
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Abstract

Background: Previous published prognostic models for COVID-19 patients have been suggested to be prone to
bias due to unrepresentativeness of patient population, lack of external validation, inappropriate statistical analyses,
or poor reporting. A high-quality and easy-to-use prognostic model to predict in-hospital mortality for COVID-19
patients could support physicians to make better clinical decisions.

Methods: Fine-Gray models were used to derive a prognostic model to predict in-hospital mortality (treating
discharged alive from hospital as the competing event) in COVID-19 patients using two retrospective cohorts
(n=1008) in Wuhan, China from January 1 to February 10, 2020. The proposed model was internally evaluated
by bootstrap approach and externally evaluated in an external cohort (n=1031).
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curves in patients with different risk profiles.

Results: The derivation cohort was a case-mix of mild-to-severe hospitalized COVID-19 patients (43.6% females,
median age 55). The final model (PLANS), including five predictor variables of platelet count, lymphocyte
count, age, neutrophil count, and sex, had an excellent predictive performance (optimism-adjusted C-index:
0.85, 95% Cl: 0.83 to 0.87; averaged calibration slope: 0.95, 95% Cl: 0.82 to 1.08). Internal validation showed little
overfitting. External validation using an independent cohort (47.8% female, median age 63) demonstrated
excellent predictive performance (C-index: 0.87, 95% Cl: 0.85 to 0.89; calibration slope: 1.02, 95% Cl: 0.92 to
1.12). The averaged predicted cumulative incidence curves were close to the observed cumulative incidence

Conclusions: The PLANS model based on five routinely collected predictors would assist clinicians in better
triaging patients and allocating healthcare resources to reduce COVID-19 fatality.

Keywords: COVID-19, In-hospital mortality, Prognostic model, PLANS

Background

The novel coronavirus disease 2019 (COVID-19) has
become a pandemic worldwide since its first outbreak
in Wuhan, China since December 2019 [1]. As of July
3, 2020, more than 10 million cases are confirmed in
over 200 countries, including 517,337 deaths [2]. Due
to the high contagiousness and rapid progression of
the disease, healthcare demand, in particular for crit-
ical care capacities, has often been overwhelming even
in high-income areas [3]. Good support tools are
needed for clinicians and other healthcare workers to
respond promptly to urgent situations. It is crucial to
accurately select severe patients for targeted treat-
ment. For example, while it is essential to increase
the intensive care unit (ICU) capacities and staff, ICU
triage may be critical to prioritize severe patients for
intensive care [4]. Therefore, early stratification of
patients will facilitate targeted supportive care and
appropriate allocation of medical resources.

Prognostic model that combines several clinical or
non-clinical variables to estimate the future health out-
comes of an individual could be a useful tool [5]. To
respond quickly to the health crisis of COVID-19, a
prognostic model based on robust evidence could be
used as a simple and inexpensive tool to assist physicians
in triaging the patients in the first place, which in turn
may mitigate the burden of overwhelmed healthcare sys-
tem and better allocate limited healthcare resources to
reduce COVID-19 fatality [6]. Currently, several clinical
prognostic models have been developed for COVID-19
patients [7, 8]. However, the quality of these models has
been criticized and was prone to bias due to unrepresen-
tativeness of patient population, lack of external valid-
ation, inappropriate statistical analyses, or poor
reporting [7]. Two of these prognostic models have been
constructed with promising predictive performance for
predicting mortality [9, 10]. However, they may not be
highly reliable due to relatively small derivation cohorts
(189 to 296 patients) and external validation cohorts (19

to 165 patients). Several studies used a time-to-event
analysis to allow for administrative censoring [11-13].
However, censoring for other reasons, such as being dis-
charged alive because of quick recovery, were seldom
considered to be analyzed in a competing risk frame-
work. For example, the CALL score [11] predicted the
disease progression in hospitalized COVID-19 patients
by using the standard Cox model. In this study, the risk
of progression would be over-estimated because the pa-
tients discharged alive are no longer at risk of disease
progression while the standard Cox model assumes they
are still at risk.

In this study, we aimed to develop and validate a prog-
nostic model to predict in-hospital mortality in COVID-
19 patients using routinely measured demographic and
clinical characteristics.

Methods

Study cohorts

Derivation cohort

The derivation cohort included 1008 COVID-19 patients ad-
mitted at Jinyintan Hospital (# =763) and Union Hospital
(n=245) in Wuhan, China from January 1 to February 10,
2020. Patients were followed up to March 20, 2020. Patients
who were still hospitalized until March 20, 2020 were not
included in the analyses. The Jinyintan hospital had mostly
severe patients while Union Hospital had mostly mild
patients, thus providing a case-mix of mild-severe COVID-
19 patients.

Validation cohort

The validation cohort included 1031 COVID-19 patients
aged >18 years at Tongji Hospital in Wuhan, China from
January 14 to March 8, 2020. Since this cohort was
designed to assess the potential risk factors related to
acute cardiac injury in COVID-19 patients, patients with
stage of chronic kidney disease >4, chronic heart failure
in the decompensatory stage, acute myocardial infarction
during hospitalization, or having missing information on
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hypersensitive cardiac troponin I were excluded. Patients
were followed up to March 30, 2020.

Data collection

A trained team of physicians retrospectively reviewed
clinical electronic medical records and laboratory find-
ings for all the patients. All patients met the diagnostic
criteria according to the WHO interim guidance [14]. In
the derivation cohort, we collected data on age, sex, the
dates of admission and discharge or death, complete
blood count at admission (neutrophil, lymphocyte, plate-
let count, haemoglobin), current smoking status (no,
yes), chronic disease history (hypertension, digestive dis-
ease, kidney disease, coronary heart disease (CHD),
chronic pulmonary disease, cerebrovascular disease, dia-
betes, thyroid disease, malignancy, and other diseases).
In the validation cohort, we collected data on age, sex,
the dates of admission and discharge or death, complete
blood count at admission (neutrophil, lymphocyte, plate-
let count), chronic disease history (hypertension, dia-
betes, CHD). All data were reviewed and collected by
two physicians and a third researcher adjudicated any
difference in interpretation between the two physicians.

Outcome and candidate predictors

The end point of interest was the time from hospital
admission until in-hospital death (event of interest) or
discharged alive (competing event) or 30-day after hos-
pital admission (censored), whichever came first. Dis-
charged alive was treated as a competing event because
the event of discharged alive precludes the event of in-
hospital death. Since conventional survival methods,
such as Kaplan-Meier method and Cox model, assume
two competing events (in-hospital death and discharged
alive) are independent, they are not valid any more and
more advanced methods accounting for competing risks
should be used. Candidate predictor variables included a
set of demographic variables (age, sex, current smoking
status), laboratory findings (neutrophil count, lympho-
cyte count, platelet count), and comorbidities (hyperten-
sion, CHD, diabetes, cerebrovascular disease, and
malignancy), which were selected according to clinical
knowledge, literature, [7, 15] and data availability. While
current smoking status was not considered due to high
proportion of missing data in the derivation cohort
(46.3% missing), information on all other candidate pre-
dictor variables and outcome was complete for data
analysis.

Model derivation

Fine-Gray models were used to develop the prognostic
model, treating discharged alive from hospital as a com-
peting event [16]. The prognostic model derivation con-
sisted of a prognostic index (PI) that captured the effect
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of the predictor variables on cumulative incidence func-
tion (CIF) for death, and a baseline CIF that determined
the cumulative mortality of an “average” patient, i.e., a
patient with the average value of PI. First, uni-variable
Fine-Gray models with fractional polynomials (max-
imum permissible degree 1) were performed to investi-
gate the potential non-linear relationship between
continuous variables and CIF for death. Second, a multi-
variable Fine-Gray model with all the predictors was
built. Backward elimination was applied to do the vari-
able selection with significant level setting to 0.05,
resulting in a final model in this step. PI was then calcu-
lated based on the combination of B coefficients and
values of the corresponding predictors. The baseline CIF
CIFy(t) corresponds to the cumulative mortality of an
“average” patient with the average value of PI. The CIF
for death of other patients can be computed via the for-

mula: CIF,(¢) = 1 - (1 - CIFo(¢)) ®®? = PD)
the PI of patient i and PI is the average value of PI in
the derivation cohort. Details about the implementation
and estimates of the Fine-Gray model, see the Additional
file 1: Appendix Text 1.

, where PI; is

Model performance and internal validation

Model performance was assessed in terms of discrim-
ination and calibration. Discrimination was assessed
using the concordance statistic (C-index) [17]. Cali-
bration was assessed jointly by calibration slope and
calibration plot. Calibration slope is a measure to esti-
mate the regression coefficient on the PI in the valid-
ation dataset [18]. In the calibration plot, the averaged
predicted mortality curves estimated by the proposed
prognostic model were compared with the averaged
observed mortality curves across several risk groups.
The risk group was based on patients’ PI (thresholds:
16th, 50th and 84th percentiles) [19].

We performed internal validation to estimate the opti-
mism (the level of model overfitting) and adjusted mea-
sures of C-index and calibration slope by bootstrapping
1000 samples of the original data (a detailed description
of implementation of bootstrap is provided in Additional
file 1: Appendix Text 2). Average calibration slope in the
internal validation was obtained to be a uniform shrink-
age factor. We multiplied the shrinkage factor by the
raw PI (PI in the model derivation step) to obtain
optimism-adjusted PI. Lastly, we developed the final
model by re-estimating the baseline CIF for death based
on the optimism-adjusted PL

External validation

The final model was applied to each patient in the exter-
nal validation cohort. PI was then calculated based on
the combination of B coefficients and the corresponding
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predictor values of every patient. The discriminative
accuracy of the proposed model was evaluated using C-
index and visually checked by the distribution of PIs.
The calibration accuracy of the proposed model was
assessed using calibration slope and visually checked by
calibration plot.

Statements about reporting and evaluation of our
prognostic model

The reporting of this prognostic model study followed
Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
statement (Additional file 2) [20]. The risk of bias of the
prognostic model was independently assessed by an
expert (JW, who did not take part in the model develop-
ment and validation) using PROBAST (prediction model
risk of bias assessment tool) [21].

Results

Patient population

In the derivation cohort, the median age of 1008 patients
was 55 (interquartile range [IQR] 44—65, youngest at 14
years of age and oldest at 98 years) and 43.6% patients
were females. During a median length of stay (LOS) of
12 days (IQR 8-16), 211 patients died in total, and 4 of
which died beyond 30 days. Seven hundred fifty-seven
patients discharged alive from the hospital within 30
days. There were 438 (43.5%) patients with one or more
comorbidities. Hypertension (N =232, 23.0%), diabetes
(N=110, 10.9%), chronic digestive disease (N =78,

Table 1 Basic characteristics
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7.7%), and chronic pulmonary disease (N =40, 4.0%)
were among the most frequent comorbidities (Table 1).

In the validation cohort, the 1031 patients included
were older (63, IQR 52-70), had more females (47.8%),
and were more prevalent with hypertension (N =383,
37.1%), CHD (N=83, 8.1%) and diabetes (N =189,
18.3%), compared to the derivation cohort (Table 1).
Patients had a longer LOS (19, IQR 11-27). The in-
hospital mortality of patients in the validation cohort
was slightly lower compared with the derivation cohort
(Additional file 1: Appendix Fig. 1).

Coding of predictors

Categorical predictors (sex, hypertension, CHD, diabetes,
cerebrovascular disease and malignancy) were coded as
dummy variables. Among continuous predictors, we did
not observe obvious violation of linearity assumption for
age, neutrophil and platelet count. We observed a non-
linear relation between outcome and lymphocyte count.
Therefore, we included the transformed lymphocyte
count (square root of the lymphocyte count) in the
model according to the results of fractional polynomial
analyses.

Model derivation and internal validation

The PLANS model included five predictors: platelet
count, lymphocyte count, age, neutrophil count, and sex.
Cumulative incidence function for the in-hospital mor-
tality was associated with older age, being male, higher
neutrophil, lower lymphocyte and lower platelet count

Derivation cohort (n =1008)

Validation cohort (n=1031)

Age, years 55 (44-65)
Sex, female 439 (43.6%)
Current smoke status” 57 (10.5%)

Neutrophil count, x 107/L 440 (2.79-6.96)
0.95 (0.61-1.34)

194 (145-256)

Lymphocyte count’, x 10%/L

Platelet count’, x 10%/L

Haemoglobin”, g/L 126 (115-138)
Chronic pulmonary disease 40 (4.0%)
Hypertension 232 (23.0%)
Coronary heart disease 32 (3.2%)
Diabetes 110 (10.9%)
Thyroid disease 31 (3.1%)
Chronic digestive disease 78 (7.7%)
Cerebrovascular disease 22 (2.2%)
Chronic kidney disease 25 (2.5%)
Malignancy 31 (3.1%)

63 (52-70)

493 (47.8%)
3.90 (2.78-5.68)
1.07 (0.70-1.49)
219 (164-288)

383 (37.1%)
83 (8.1%)
189 (18.3%)

“Current smoke status was missing in 467 (46.3%) patients in the derivation cohort, lymphocyte count was missing in 1 patient in the validation cohort, platelet
count was missing in 2 patients in the validation cohort, and haemoglobin was missing in 376 (37.3%) patients in the derivation cohort
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(Table 2). This model showed excellent apparent dis-
criminative ability (C-index: 0.85, 95% CI: 0.83 to 0.88).
After adjusting for overfitting, the model maintained ex-
cellent discriminative accuracy (optimism-adjusted C-
index: 0.85, 95% CI: 0.83 to 0.87). The average calibra-
tion slope (uniform shrinkage factor) was 0.95 (95% CI:
0.82 to 1.08), suggesting little model overfit. The final PI
was calculated as 0.95 (uniform shrinkage factor) times
the raw PI and the formula for final PI was structured as

PI = - 0.002«Platelet — 2.399xLymphocyte
+ 0.044xAge + 0.127*Neutrophil
+ 0.468+Sex (1)

— Platelet: x 10°/L

— Lymphocyte: x 10°/L, transformed to lymphocyte *
0.5

— Age: in years

— Neutrophil: x 10°/L

— Sex: female = 0; male =1

The distribution of final PI suggested good discrimina-
tive ability of our model (upper panel of Fig. 1). The re-
lationship between PI and 7-day, 14-day and 30-day
mortality are presented in Fig. 2. While we observed a
slight underestimate of the mortality in the highest risk
group, the agreement between predicted mortality
curves and the observed mortality curves in the other
risk groups suggested good calibration of our model (left
panel of Fig. 3). The final formula for the PLANS model
and a patient example of how it can be applied in the
real clinical practice is depicted in Table 3. Furthermore,
an online calculator can be accessed for this calculation:
https://plans.shinyapps.io/dynnomapp/.

External validation

We applied the PLANS model to the independent co-
hort of 1031 patients from Tongji Hospital. The distri-
bution of the PIs in the validation cohort was very
similar to that in the derivation cohort, suggesting that
the excellent discriminative accuracy of our model

Table 2 Results from multi-variable Fine-Gray model
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maintained in the validation cohort (Fig. 1). The result-
ing C-index showed excellent discriminative accuracy
of our model (C-index: 0.87, 95% CI: 0.85 to 0.89). Re-
garding the calibration accuracy, our model slightly
overestimated mortality in each risk group (right panel
of Fig. 3). Details about the thresholds and correspond-
ing proportion and death toll included in each risk
group are provided (Additional file 1: Appendix
Table 2). Jointly considering a close-to-one calibration
slope (1.02, 95% CI: 0.92 to 1.12) and good agreement
between predicted and observed cumulative incidence
curves, our model still suggested good calibration ac-
curacy in the validation cohort.

Model update

The proposed model may not be directly applied to
other areas where the distribution of predictive factors
may be different from that in Wuhan. For instance, New
York of USA and Lombardy of Italy could have a differ-
ent distribution of preditor variables compared with
Wuhan. Therefore, we used entropy balancing to update
proposed model to generalize to their settings [22]. De-
tails about the two updated model, see the Additional
file 1: Appendix Text 3.

Methodology quality assessment
According to the PROBAST, the proposed model was
rated as low risk of bias in all four domains: 17 of the
total signaling questions were “Yes” and 3 were “Prob-
ably Yes”. Rationales of answers were shown in Add-
itional file 1: Appendix Table 6.

Discussion

We developed a prognostic model (PLANS), using clin-
ical readily available measures of platelet count, lympho-
cyte count, age, neutrophil count, and sex, to predict in-
hospital mortality for COVID-19 patients using two
retrospective cohorts in Wuhan, China. This model was
first internally validated using bootstrap and then exter-
nally validated in an independent cohort in Wuhan. The
PLANS model showed excellent discriminative and cali-
bration accuracy.

Variables Coding Coefficient 95% ClI P

Age =X 0.046 0.036-0.057 <0.001
Sex Dummy (0 =Female, 1 =Male) 0.490 0.179-0.802 0.002
Neutrophil count =X 0.133 0.109-0.156 <0.001
Lymphocyte count Lymphocyte count A 0.5 -2.514 —3.192--1.835 <0.001
Platelet count =X —-0.002 —0.004 - -0.001 0.028

“x stands for original value
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Fig. 1 Distribution of the prognostic index of the prognostic model in the derivation and validation cohort; Upper part: derivation cohort; Lower
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All the five predictors are routinely collected and some
of them have been already well established as the risk
factors for in-hospital mortality in previous studies [23].
Recent studies from Italy, the USA, and China [24-26]
have also reported that advanced age was a strong pre-
dictor of in-hospital mortality as suggested in our study.
Compared to previous studies, [27, 28] our study had a
more balanced gender composition. Our finding that
male gender was associated with increased in-hospital
mortality provided further evidence to support the hy-
pothesis of male’s vulnerability to COVID-19 [29, 30].
Our study further confirmed that poor prognosis was as-
sociated with higher neutrophil and lower lymphocyte
count [31]. On top of that, lymphopenia was found to
have a non-linear relation with in-hospital mortality. A
meta-analysis of nine studies had reported that
thrombocytopenia was significantly associated with the
severity of COVID-19 disease, but heterogeneity be-
tween studies was high [32]. Given a relatively large
sample size and longer follow-up, our study indicated

thrombocytopenia was associated with a higher risk of
in-hospital mortality. Other studies have shown that sev-
eral comorbidities (hypertension, diabetes, and coronary
heart disease) were associated with poor prognosis [24,
33]. While none of the comorbidities were included in
our model, we found that diabetes status would be in-
corporated when we excluded age from our model. It is
plausible as the prevalence of most comorbidities, in
particular diabetes, increases with age [25].

Since the outbreak of COVID-19 in Wuhan, a number
of prognostic models have been established [7]. A com-
prehensive systematic review conducted by Wynants and
colleagues found that most of these models were of high
risk of bias due to several methodological limitations
from participant domain to analysis domain [7]. Com-
pared to the previous models, the PLANS model has
several strengths. Our derivation cohort had a relatively
large sample size with complete information on candi-
date predictors. While duration of follow up was unclear
in most of the previous studies, the patients in our study
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day and 30-day mortality versus a smooth function of the prognostic index using generalized additive model (black line) together with the 95%
confidence band; Upper part: derivation cohort; Lower part: validation cohort

were followed over a relatively long period, allowing us
to perform a time-to-event analysis to predict in-
hospital mortality. Furthermore, a competing risk ana-
lysis treating discharged alive as a competing event was
done in this study to avoid overestimation of mortality.
The similar distribution of age and sex in our study to
recent large international reports [34, 35] indicates good
representativeness of the patient population. External
validation of the PLANS model to a large sample of pa-
tients showed excellent discrimination and calibration
accuracy, indicating the generalizability of the PLANS
model in the same city. Furthermore, we explored the
possibility of generalizing the PLANS model to New
York and Lombardy by using the published summary
statistics. Though the adapted models are not recom-
mended being applied before external validation, it
might still be a good initiative to develop them and
make use of them in the areas where the pandemic is
still prevailing. The PLANS model was developed follow-
ing high methodological standard and rated as low risks
of bias in all four domains using PROBAST. Therefore,
the PLANS model might be more reliable than most of

the published prognostic models in making clinical
decisions.

Several limitations should be noted. First, like most of
the previous datasets and two main initiatives which cre-
ated protocols for the investigators, namely, the ‘Inter-
national Severe Acute Respiratory and emerging
Infectious Consortium (ISARIC) and the ‘Lean Euro-
pean Open Survey on SARS-CoV-2 Infected Patients
(LOESS)’, we only include closed (discharged or dead)
COVID-19 cases. However, the resulting bias of unrep-
resentative sample could be largely offset by the long
period of follow-up time. Second, we did have missing
data on current smoking status for some patients. Inclu-
sion of smoking status into the current model might im-
prove the model performance. However, a reliable
mechanism under the association between smoking and
negative progression of COVID-19 is still missing [36].
Third, some potential risk factors confirmed by previous
studies, such as D-dimer [31], C-reactive protein [37],
lactate dehydrogenase [27, 38], and interleukin-6 [27],
were not available in our study. Respiration symptoms
were not available either, and inclusion of which might
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Table 3 Final prognostic model (PLANS)

Pl; = —0.002 » Platelet — 2.399 « Lymphocyte + 0.044 + Age + 0.127 « Neutrophil + 0.468 + Sex,
CIF;(t) = 1= (1 = CIFy(2))®™P®1-PD,

- Platelet: x10%/L

- Lymphocyte: x10%/L, transformed to lymphocyte * 0.5

- Age: in years

- Neutrophil: x10%/L

- Sex: female=0; male=1

- CIF,(t): the mortality of an “average” patient with PI equaling to 0.5662, which is given in
Appendix Table 1

-PI = 0.5662

- CIF;(t): the probability of death at time t

Example

* Suppose a 50 year old male patient was diagnosed with COVID-19 and was admitted in the hospital.
He immediately went blood test and the results showed as follows:

- Neutrophil count (10%/L): 1.84,

- Lymphocyte count (10°/L): 0.69,

- Platelet count (10%/L): 184.

The 7-day and 30-day mortality can be estimated as follows:
* Pl; = =0.002 + 184 — 2.399 » (0.69°%) + 0.044 + 50 + 0.127 * 1.84 + 0.468 + 1 = 0.5409
* 7-day mortality:
CIF;(7) = 1= (1 = CIF,(7))®*P(0:5409-05662) = 1 — (1 — (.0350)*P(-0.0253) = 3 41%
* 30-day mortality:
CIF;(30) = 1 = (1 = CIF,(30))e*p(0-5409-05662) — 1 — (1 — (0.1197)®*XP(~00253) = 11,69%
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improve the predictive accuracy. However, considering
the practicality and validity in clinical application, a sim-
ple and interpretable model is usually preferred [39]. In
addition, our model showed promising performances
with five routinely available predictors, balancing the
trade-off between model performance and model
practicality.

Implication for practice

The availability of a prognostic model that can accur-
ately predict in-hospital mortality in COVID-19 patients
upon admission to hospital has important implications
for practice and policy. The PLANS model may assist
physicians to early stratify the patients according to the
estimated mortality at 7-day (14-day or 30-day) after
admission, thus giving patients targeted supporting care
and better allocating the limited medical facilities (e.g.
ventilators), especially when critical care capacities are
overwhelmed. Several studies showed that physicians
have been experiencing guilt when they make clinical
decisions that contravene the morals of those making
them, e.g. one ventilator, two patients [40, 41]. The
PLANS model might be useful to be incorporated into a
protocol to assist physicians in making those difficult
decisions. Our findings from the model update suggest
that our model might be generalized to different coun-
tries as well. The model could be validated in the first
place and then be used directly if it performs well or
after being updated according to local settings [42].

Conclusions

In summary, the PLANS model can be a guidance model
for Chinese hospitals in case of the resurgence of
COVID-19. It can also be a useful tool for predicting
mortality or triage patients in the countries where
COVID-19 is still a pandemic after being validated in
their settings. Future studies are warranted about the
impact of the PLANS model on clinical practice and
decision.
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