3,135 research outputs found

    Collective chemotactic dynamics in the presence of self-generated fluid flows

    No full text
    In micro-swimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynamic instabilities for isotropic suspensions, the first driving aggregation, the second producing increased orientational order in suspensions of "pushers" and maximal disorder in suspensions of "pullers". Nonlinear simulations show that hydrodynamic interactions can limit and modify chemotactically-driven aggregation dynamics. In puller suspensions the dynamics form aggregates that are mutually-repelling due to the non-trivial flows. In pusher suspensions chemotactic aggregation can lead to destabilizing flows that fragment the regions of aggregation.Comment: 4 page

    Surface Waves on a Semi-toroidal Water Ring

    Get PDF
    We study the dynamics of surface waves on a semi-toroidal ring of water that is excited by vertical vibration. We create this specific fluid volume by patterning a glass plate with a hydrophobic coating, which confines the fluid to a precise geometric region. To excite the system, the supporting plate is vibrated up and down, thus accelerating and decelerating the fluid ring along its toroidal axis. When the driving acceleration is sufficiently high, the surface develops a standing wave, and at yet larger accelerations, a traveling wave emerges. We also explore frequency dependencies and other geometric shapes of confinement

    Interpretation of the ion mass spectra in the mass range 25-35 obtained in the inner coma of Halley's comet by the HIS-sensor of the Giotto IMS Experiment

    Get PDF
    The IMS-HIS double-focussing mass spectrometer that flew on the Giotto spacecraft covered the mass per charge range from 12 to 56 (AMU/e). By comparing flight data, calibration data, and results of model calculations of the ion population in the inner coma, the absolute mass scale is established, and ions in the mass range 25 to 35 are identified. Ions resulting from protonation of molecules with high proton affinity are relatively abundant, enabling us to estimate relative source strengths for H2CO, CH3OH, HCN, and H2S, providing for the first time a positive in situ measurement of methanol. Also, upper limits for NO and some hydrocarbons are derived

    Anomalous Coronary Arteries: Anatomic and Functional Assessment by Coronary and Perfusion Cardiovascular Magnetic Resonance in Three Sisters

    Get PDF
    Combined coronary and perfusion cardiovascular magnetic resonance was performed in three sisters with angina and suspected anomalous coronary arteries. Two sisters had anomalous coronary arteries passing between the aorta and right ventricular outflow tract and had abnormal myocardial perfusion. One sister had normal anatomy and perfusion. The combined approach identified the anatomy and functional significance of suspected anomalous coronary arteries

    Cavitation-induced force transition in confined viscous liquids under traction

    Full text link
    We perform traction experiments on simple liquids highly confined between parallel plates. At small separation rates, we observe a simple response corresponding to a convergent Poiseuille flow. Dramatic changes in the force response occur at high separation rates, with the appearance of a force plateau followed by an abrupt drop. By direct observation in the course of the experiment, we show that cavitation accounts for these features which are reminiscent of the utmost complex behavior of adhesive films under traction. Surprisingly enough, this is observed here in purely viscous fluids.Comment: Submitted to Physical Review Letters on May 31, 2002. Related informations on http://www.crpp.u-bordeaux.fr/tack.htm
    corecore