319 research outputs found

    Yeast Integral Membrane Proteins Apq12, Brl1, and Brr6 Form a Complex Important for Regulation of Membrane Homeostasis and Nuclear Pore Complex Biogenesis

    Get PDF
    Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical proper- ties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during in- terphase in all eukaryotes. Here we report on the role of the essential nuclear envelope/endoplasmic reticulum (NE/ER) protein Brl1 in regulating the membrane composition of the NE/ER. We show that Brl1 and two other proteins characterized previous- ly—Brr6, which is closely related to Brl1, and Apq12—function together and are required for lipid homeostasis. All three trans- membrane proteins are localized to the NE and can be coprecipitated. As has been shown for mutations affecting Brr6 and Apq12, mutations in Brl1 lead to defects in lipid metabolism, increased sensitivity to drugs that inhibit enzymes involved in lipid synthesis, and strong genetic interactions with mutations affecting lipid metabolism. Mutations affecting Brl1 or Brr6 or the absence of Apq12 leads to hyperfluid membranes, because mutant cells are hypersensitive to agents that increase membrane flu- idity. We suggest that the defects in nuclear pore complex biogenesis and mRNA export seen in these mutants are consequences of defects in maintaining the biophysical properties of the NE

    How partnerships for community-based health professions training were affected by national changes in funding

    Full text link
    Background: Area Health Education Centers (AHEC) have contributed to U.S. healthcare workforce training since 1971. National funders recently refocused efforts from K-12 students to matriculated health profession students, which reduced annual funding by $75,000 (25%) per year per Center. Objectives: To describe how community partnership changed due to funding reductions. Methods: Key informant interviews were conducted with all four regional center directors with community partnerships. Lessons learned: Hosted regional centers navigated partnerships in ways that did not significantly change programs because the host institutions supported continuing the partnerships. Independent centers experienced significant changes in partnerships by ending well-established programs and starting new programs with new partners. Both hosted and independent centers took salary cuts, downsized staff, and applied for grants and contracts to fill the funding gap. Improved communication with the Oregon AHEC program office was reported as needed. Conclusions: Navigating partnerships differed according to host status

    Association of differential gene expression with imatinib mesylate and omacetaxine mepesuccinate toxicity in lymphoblastoid cell lines

    Get PDF
    BackgroundImatinib mesylate is currently the drug of choice to treat chronic myeloid leukemia. However, patient resistance and cytotoxicity make secondary lines of treatment, such as omacetaxine mepesuccinate, a necessity. Given that drug cytotoxicity represents a major problem during treatment, it is essential to understand the biological pathways affected to better predict poor drug response and prioritize a treatment regime.MethodsWe conducted cell viability and gene expression assays to determine heritability and gene expression changes associated with imatinib and omacetaxine treatment of 55 non-cancerous lymphoblastoid cell lines, derived from 17 pedigrees. In total, 48,803 transcripts derived from Illumina Human WG-6 BeadChips were analyzed for each sample using SOLAR, whilst correcting for kinship structure.ResultsCytotoxicity within cell lines was highly heritable following imatinib treatment (h2&thinsp;=&thinsp;0.60-0.73), but not omacetaxine treatment. Cell lines treated with an IC20 dose of imatinib or omacetaxine showed differential gene expression for 956 (1.96%) and 3,892 transcripts (7.97%), respectively; 395 of these (0.8%) were significantly influenced by both imatinib and omacetaxine treatment. k-means clustering and DAVID functional annotation showed expression changes in genes related to kinase binding and vacuole-related functions following imatinib treatment, whilst expression changes in genes related to cell division and apoptosis were evident following treatment with omacetaxine. The enrichment scores for these ontologies were very high (mostly &gt;10).ConclusionsInduction of gene expression changes related to different pathways following imatinib and omacetaxine treatment suggests that the cytotoxicity of such drugs may be differentially tolerated by individuals based on their genetic background.<br /

    Assessing the Use of GEE Methods for Analyzing Continuous Outcomes from Family Studies: Strong Heart Family Study

    Get PDF
    Background: Because of its convenience and robustness, the generalized estimating equations (GEE) method has been commonly used to fit marginal models of continuous outcomes in family studies. However, unbalanced family sizes and complex pedigree structures within each family may challenge the GEE method, which treats families as clusters with the same correlation structure. The appropriateness of using the GEE method to analyze continuous outcomes in family studies remains unclear. In this paper, we performed simulation studies to evaluate the performance of GEE in the analysis of family study data. Methods: In simulation studies, we generated data from a linear mixed effects model with individual random effects. The random effects covariance matrix is specified as twice that of the pedigree matrix from the Strong Heart Family Study (SHFS) and other hypothetical pedigree structures. A Bayesian approach that utilizes the pedigree matrix was also conducted as a benchmark to compare with GEE methods with either independent or exchangeable correlation structures. Finally, analysis with a real data example was included. Results: Our simulation results showed that GEE with independent correlation structure worked well for family data with continuous outcomes. Real data analysis revealed that all GEE and Bayesian approaches produced similar results. Conclusion: GEE model performs well on continuous outcome in family studies, and it yields estimated coefficients similar to a Bayesian model, which takes genetic relationship into account. Overall, GEE is robust to misspecification of genetic relationships among family members

    Genetic variants and physical activity interact to affect bone density in Hispanic children

    Get PDF
    Background: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. Methods: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. Results: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p \u3c 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5 ) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively). Discussion: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed

    Analysis of SLC16A11 Variants in 12,811 American Indians: Genotype-Obesity Interaction for Type 2 Diabetes and an Association With RNASEK Expression

    Get PDF
    Genetic variants in SLC16A11 were recently reported to be associated with type 2 diabetes in Mexican and other Latin American populations. The diabetes risk haplotype had a frequency of 50% in Native Americans from Mexico but was rare in Europeans and Africans. In the current study, we analyzed SLC16A11 in 12,811 North American Indians and found that the diabetes risk haplotype, tagged by the rs75493593 A allele, was nominally associated with type 2 diabetes (P = 0.001, odds ratio 1.11). However, there was a strong interaction with BMI (P = 5.1 × 10(-7)) such that the diabetes association was stronger in leaner individuals. rs75493593 was also strongly associated with BMI in individuals with type 2 diabetes (P = 3.4 × 10(-15)) but not in individuals without diabetes (P = 0.77). Longitudinal analyses suggest that this is due, in part, to an association of the A allele with greater weight loss following diabetes onset (P = 0.02). Analyses of global gene expression data from adipose tissue, skeletal muscle, and whole blood provide evidence that rs75493593 is associated with expression of the nearby RNASEK gene, suggesting that RNASEK expression may mediate the effect of genotype on diabetes

    Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest

    Get PDF
    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells

    Central GIP signaling stimulates peripheral GIP release and promotes insulin and pancreatic polypeptide secretion in nonhuman primates

    Get PDF
    Glucose-dependent insulinotropic polypeptide (GIP) has important actions on whole body metabolic function. GIP and its receptor are also present in the central nervous system and have been linked to neurotrophic actions. Metabolic effects of central nervous system GIP signaling have not been reported. We investigated whether centrally administered GIP could increase peripheral plasma GIP concentrations and influence the metabolic response to a mixed macronutrient meal in nonhuman primates. An infusion and sampling system was developed to enable continuous intracerebroventricular (ICV) infusions with serial venous sampling in conscious nonhuman primates. Male baboons (Papio sp.) that were healthy and had normal body weights (28.9 ± 2.1 kg) were studied (n = 3). Animals were randomized to receive continuous ICV infusions of GIP (20 pmol·kg−1·h−1) or vehicle before and over the course of a 300-min mixed meal test (15 kcal/kg, 1.5g glucose/kg) on two occasions. A significant increase in plasma GIP concentration was observed under ICV GIP infusion (66.5 ± 8.0 vs. 680.6 ± 412.8 pg/ml, P = 0.04) before administration of the mixed meal. Increases in postprandial, but not fasted, insulin (P = 0.01) and pancreatic polypeptide (P = 0.04) were also observed under ICV GIP. Effects of ICV GIP on fasted or postprandial glucagon, glucose, triglyceride, and free fatty acids were not observed. Our data demonstrate that central GIP signaling can promote increased plasma GIP concentrations independent of nutrient stimulation and increase insulin and pancreatic polypeptide responses to a mixed meal

    Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain

    Get PDF
    Objectives: The thickness of the brain’s cortical gray matter (GM) and the fractional anisotropy (FA) of the cerebral white matter (WM) each follow an inverted U-shape trajectory with age. The two measures are positively correlated and may be modulated by common biological mechanisms. We employed four types of genetic analyses to localize individual genes acting pleiotropically upon these phenotypes. Methods: Whole-brain and regional GM thickness and FA values were measured from high-resolution anatomical and diffusion tensor MR images collected from 712, Mexican American participants (438 females, age = 47.9 ± 13.2 years) recruited from 73 (9.7 ± 9.3 individuals/family) large families. The significance of the correlation between two traits was estimated using a bivariate genetic correlation analysis. Localization of chromosomal regions that jointly influenced both traits was performed using whole-genome quantitative trait loci (QTL) analysis. Gene localization was performed using SNP genotyping on Illumina 1M chip and correlation with leukocyte-based gene-expression analyses. The gene-expressions were measured using the Illumina BeadChip. These data were available for 371 subjects. Results: Significant genetic correlation was observed among GM thickness and FA values. Significant logarithm of odds (LOD ≥ 3.0) QTLs were localized within chromosome 15q22–23. More detailed localization reported no significant association (p \u3c 5·10−5) for 1565 SNPs located within the QTLs. Post hoc analysis indicated that 40% of the potentially significant (p ≤ 10−3) SNPs were localized to the related orphan receptor alpha (RORA) and NARG2 genes. A potentially significant association was observed for the rs2456930 polymorphism reported as a significant GWAS finding in Alzheimer’s disease neuroimaging initiative subjects. The expression levels for RORA and ADAM10 genes were significantly (p \u3c 0.05) correlated with both FA and GM thickness. NARG2 expressions were significantly correlated with GM thickness (p \u3c 0.05) but failed to show a significant correlation (p = 0.09) with FA. Discussion: This study identified a novel, significant QTL at 15q22–23. SNP correlation with gene-expression analyses indicated that RORA, NARG2, and ADAM10 jointly influence GM thickness and WM–FA values

    Association of protein function-altering variants with cardiometabolic traits:the strong heart study

    Get PDF
    Clinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor allele count = 20, range of 1 to 1064), similar to 43% were not present in publicly available repositories. We identified seven SNV-trait significant associations including a missense SNV at ABCA10 (rs779392624, p= 8 x 10(-9)) associated with fasting triglycerides, which gene product is involved in macrophage lipid homeostasis. Among non-diabetic individuals, missense SNVs at four genes were associated with fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p= 2.1 x 10(-6); TRPM3, rs760461668, p= 5 x10(-8); SPTY2D1, rs756851199, p= 1.6 x 10(-8); and TSPO, rs566547284, p= 2.4 x 10(-6)). PHIL encoded protein is involved in pancreatic beta-cell proliferation and survival, and TRPM3 protein mediates calcium signaling in pancreatic beta-cells in response to glucose. A genetic risk score combining increasing insulin risk alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of impaired fasting glucose at follow-up. Our study uncovered novel gene-trait associations through the study of protein-coding variants and demonstrates the advantages of association screenings targeting diverse and high-risk populations to study variants absent in publicly available repositories
    • …
    corecore