75 research outputs found

    Urinary neopterin concentrations vs total neopterins for clinical utility

    Get PDF
    Fuchs D, Milstien S, Krämer A, et al. Urinary neopterin concentrations vs total neopterins for clinical utility. Clinical Chemistry. 1989;35(12):2305-2307.Neopterin measurements are especially useful as an early marker in (e.g.) allograft rejections and in patients infected with human immunodeficiency virus type 1 (HIV-1). An increased concentration of total neopterins (neopterin + dihydroneopterin) is also a significant marker in patients with HIV-1 infection. In this study we compared concentrations of neopterin and total neopterins in urine samples from 77 homosexual men with and 73 without established HIV-1 infection. HIV- 1-seropositive homosexual men had higher concentrations of neopterin and total neopterins (and 7,8-dihydroneopterin) in their urine than did those who were HIV-1-seronegative, and there was a close correlation between neopterin and total neopterins. Both neopterin variables correlated inversely with CD4 + T-cell counts and CD4 +/CD8 + T-cell ratios but not with CD8+ T-cell counts in the HIV-1-seropositive men. Our data indicate that measurements of neopterin and total neopterins are of almost equal potential for clinical diagnosis. However, when measuring total neopterins, which includes oxidation of 7,8- dihydroneopterin to neopterin, more strict requirements of sample collection and handling are necessary to avoid degradation of the 7,8- dihydro derivative

    Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension

    Get PDF
    The process of neurite extension after activation of the TrkA tyrosine kinase receptor by nerve growth factor (NGF) involves complex signaling pathways. Stimulation of sphingosine kinase 1 (SphK1), the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P), is part of the functional TrkA signaling repertoire. In this paper, we report that in PC12 cells and dorsal root ganglion neurons, NGF translocates SphK1 to the plasma membrane and differentially activates the S1P receptors S1P1 and S1P2 in a SphK1-dependent manner, as determined with specific inhibitors and small interfering RNA targeted to SphK1. NGF-induced neurite extension was suppressed by down-regulation of S1P1 expression with antisense RNA. Conversely, when overexpressed in PC12 cells, transactivation of S1P1 by NGF markedly enhanced neurite extension and stimulation of the small GTPase Rac, important for the cytoskeletal changes required for neurite extension. Concomitantly, differentiation down-regulated expression of S1P2 whose activation would stimulate Rho and inhibit neurite extension. Thus, differential transactivation of S1P receptors by NGF regulates antagonistic signaling pathways that modulate neurite extension

    Transactivation of Sphingosine-1–Phosphate Receptors by FcɛRI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis

    Get PDF
    Mast cells secrete various substances that initiate and perpetuate allergic responses. Cross-linking of the high-affinity receptor for IgE (FcɛRI) in RBL-2H3 and bone marrow–derived mast cells activates sphingosine kinase (SphK), which leads to generation and secretion of the potent sphingolipid mediator, sphingosine-1–phosphate (S1P). In turn, S1P activates its receptors S1P1 and S1P2 that are present in mast cells. Moreover, inhibition of SphK blocks FcɛRI-mediated internalization of these receptors and markedly reduces degranulation and chemotaxis. Although transactivation of S1P1 and Gi signaling are important for cytoskeletal rearrangements and migration of mast cells toward antigen, they are dispensable for FcɛRI-triggered degranulation. However, S1P2, whose expression is up-regulated by FcɛRI cross-linking, was required for degranulation and inhibited migration toward antigen. Together, our results suggest that activation of SphKs and consequently S1PRs by FcɛRI triggering plays a crucial role in mast cell functions and might be involved in the movement of mast cells to sites of inflammation

    The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERα expression and enhances hormonal therapy for breast cancer

    Get PDF
    Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and does not respond to conventional hormonal therapies. Strategies that lead to re-expression of ERα could sensitize ERα-negative breast cancers to selective ER modulators. FTY720 (fingolimod, Gilenya), a sphingosine analog, is the Food and Drug Administration (FDA)-approved prodrug for treatment of multiple sclerosis that also has anticancer actions that are not yet well understood. We found that FTY720 is phosphorylated in breast cancer cells by nuclear sphingosine kinase 2 and accumulates there. Nuclear FTY720-P is a potent inhibitor of class I histone deacetylases (HDACs) that enhances histone acetylations and regulates expression of a restricted set of genes independently of its known effects on canonical signaling through sphingosine-1-phosphate receptors. High-fat diet (HFD) and obesity, which is now endemic, increase breast cancer risk and have been associated with worse prognosis. HFD accelerated the onset of tumors with more advanced lesions and increased triple-negative spontaneous breast tumors and HDAC activity in MMTV-PyMT transgenic mice. Oral administration of clinically relevant doses of FTY720 suppressed development, progression and aggressiveness of spontaneous breast tumors in these mice, reduced HDAC activity and strikingly reversed HFD-induced loss of estrogen and progesterone receptors in advanced carcinoma. In ERα-negative human and murine breast cancer cells, FTY720 reactivated expression of silenced ERα and sensitized them to tamoxifen. Moreover, treatment with FTY720 also re-expressed ERα and increased therapeutic sensitivity of ERα-negative syngeneic breast tumors to tamoxifen in vivo more potently than a known HDAC inhibitor. Our work suggests that a multipronged attack with FTY720 is a novel combination approach for effective treatment of both conventional hormonal therapy-resistant breast cancer and triple-negative breast cancer

    Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking

    Get PDF
    Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes

    Sphingosine-1-phosphate: signaling inside and out

    Get PDF
    AbstractAmple evidence indicates that sphingosine-1-phosphate (SPP) can serve as an intracellular second messenger regulating calcium mobilization, and cell growth and survival. Moreover, the dynamic balance between levels of the sphingolipid metabolites, ceramide and SPP, and consequent regulation of opposing signaling pathways, is an important factor that determines whether a cell survives or dies. SPP has recently also been shown to be the ligand for the EDG-1 family of G-protein-coupled receptors, which now includes EDG-1, -3, -5, -6 and -8. SPP is thus a lipid mediator that has novel dual actions signaling inside and outside of the cell

    Sphingosine-1-phosphate: dual messenger functions

    Full text link

    Shooting the Messenger

    No full text

    Pleiotropic actions of sphingosine-1-phosphate

    No full text
    Sphingosine-1-phosphate (SIP) is a bioactive sphingolipid metabolite that regulates diverse cellular responses including, growth, survival, cytoskeleton rearrangements and movement. SIP plays an important role during development, particularly in vascular maturation and has been implicated in pathophysiology of cancer, wound healing, and atherosclerosis. This review summarizes the evidence showing that signaling induced by SIP is complex and involves both intracellular and extracellular actions. The intracellular effects of SIP remain speculative awaiting the identification of specific targets whereas the extracellular effects of SIP are clearly mediated through the activation of five specific G protein coupled receptors, called S1P1-5. Recent studies demonstrate that intracellular generated SIP can act in a paracrine or autocrine manner to activate its cell surface receptors
    • …
    corecore