3,736 research outputs found
Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
We present results from extensive molecular dynamics simulations of collapse
transitions of hydrophobic polymers in explicit water focused on understanding
effects of lengthscale of the hydrophobic surface and of attractive
interactions on folding. Hydrophobic polymers display parabolic, protein-like,
temperature-dependent free energy of unfolding. Folded states of small
attractive polymers are marginally stable at 300 K, and can be unfolded by
heating or cooling. Increasing the lengthscale or decreasing the polymer-water
attractions stabilizes folded states significantly, the former dominated by the
hydration contribution. That hydration contribution can be described by the
surface tension model, , where the surface
tension, , is lengthscale dependent and decreases monotonically with
temperature. The resulting variation of the hydration entropy with polymer
lengthscale is consistent with theoretical predictions of Huang and Chandler
(Proc. Natl. Acad. Sci.,97, 8324-8327, 2000) that explain the blurring of
entropy convergence observed in protein folding thermodynamics. Analysis of
water structure shows that the polymer-water hydrophobic interface is soft and
weakly dewetted, and is characterized by enhanced interfacial density
fluctuations. Formation of this interface, which induces polymer folding, is
strongly opposed by enthalpy and favored by entropy, similar to the
vapor-liquid interface.Comment: 24 pages, 5 figure
Photoresist Derived Carbon Films as High Capacity Anodes for Lithium Ion Battery
An epoxy-based negative photoresist (SU-8) was spin-coated on
stainless steel (SS) wafers followed by two-step pyrolysis in inert
atmosphere to yield dense carbon films to be used as anodes for
lithium (Li) ion batteries. The selection of SS wafer substrates was
in accordance with commercial Li ion battery architecture. Cyclic
voltammograms confirm the passive layer formation by electrolyte
decomposition in the initial cycle. Galvanostatic charge/discharge
experiments in the range 0.01-3 V performed at a C-rate=0.1 C
confirms the reversible intercalation of Li ions and shows higher
gravimetric reversible capacity for these photoresist-derived
carbon films on SS wafer substrates than graphite (400 mAh/g vs.
372 mAh/g for graphite). This high reversible capacity may be
attributed to high disorder in photoresist derived-carbon as
characterized by X-ray diffraction and Raman spectroscopy
Large zero-field cooled exchange-bias in bulk Mn2PtGa
We report a large exchange-bias (EB) effect after zero-field cooling the new
tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The
first-principle calculation and the magnetic measurements reveal that Mn2PtGa
orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that
ferrimagnetic (FI) ordering is essential to isothermally induce the exchange
anisotropy needed for the zero-field cooled (ZFC) EB during the virgin
magnetization process. The complex magnetic behavior at low temperatures is
characterized by the coexistence of a field induced irreversible magnetic
behavior and a spin-glass-like phase. The field induced irreversibility
originates from an unusual first-order FI to antiferromagnetic transition,
whereas, the spin-glass like state forms due to the existence of anti-site
disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate
file; accepted for publication in PR
Thermopower and thermal conductivity in the Weyl semimetal NbP
The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and
an ultra-high mobility. The large MR originates from a combination of the
nearly perfect compensation between electron- and hole-type charge carriers and
the high mobility, which is relevant to the topological band structure. In this
work we report on temperature- and field-dependent thermopower and thermal
conductivity experiments on NbP. Additionally, we carried out complementary
heat capacity, magnetization, and electrical resistivity measurements. We found
a giant adiabatic magnetothermopower with a maximum of 800 V/K at 50 K in
a field of 9 T. Such large effects have been observed rarely in bulk materials.
We suggest that the origin of this effect might be related to the high
charge-carrier mobility. We further observe pronounced quantum oscillations in
both thermal conductivity and thermopower. The obtained frequencies compare
well with our heat capacity and magnetization data.Comment: 6 pages, 3 figure
Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5
The structural, phonon, magnetic, dielectric, and magneto dielectric
responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This
compound showed giant magneto dielectric response (10%-24%) induced by strong
spin-lattice coupling across its spin reorientation transition (150-250 K). The
role of two Debye temperatures pertaining to differently coordinated sites in
the dielectric relaxations is established. The positive giant
magneto-dielectricity is shown to be a direct consequence of the modulations in
the lattice degrees of freedom through applied external field across the spin
reorientation transition. Our study illustrates novel control of
magneto-dielectricity by tuning the spin reorientation transition in a material
that possess strong spin lattice coupling.Comment: 7 pages, 12 figure
Linear-in-frequency optical conductivity in GdPtBi due to transitions near the triple points
The complex optical conductivity of the half-Heusler compound GdPtBi is
measured in a frequency range from 20 to 22 000 cm (2.5 meV - 2.73 eV)
at temperatures down to 10 K in zero magnetic field. We find the real part of
the conductivity, , to be almost perfectly linear in
frequency over a broad range from 50 to 800 cm ( 6 - 100 meV) for
K. This linearity strongly suggests the presence of
three-dimensional linear electronic bands with band crossings (nodes) near the
chemical potential. Band-structure calculations show the presence of triple
points, where one doubly degenerate and one nondegenerate band cross each other
in close vicinity of the chemical potential. From a comparison of our data with
the optical conductivity computed from the band structure, we conclude that the
observed nearly linear originates as a cumulative effect
from all the transitions near the triple points.Comment: 5+ pages, 5 figures, band-structure and optical-conductivity
calculations adde
Effect of Current Collector and Pyrolysis Temperature on the Electrochemical Performance of Photoresist Derived Carbon Films
SU-8, an epoxy based negative photoresist has been demonstrated as a potential precursor to fabricate thin films and three-dimensional micropatterned arrays in glassy carbon. However, the use of silicon wafer as a substrate cum collector limits their use in real battery devices. In accordance with the commercial lithium ion battery architecture and also owing to enhanced conductivity, we have successfully demonstrated the use of stainless steel (SS) wafer as a current collector to prepare binder free SU-8 derived carbon thin films. Standard carbon microelectromechanical systems (C-MEMS) process parameters were tuned to obtain a uniform, crack-free carbon thin film on SS wafer upon pyrolysis. Further, we varied the final pyrolysis temperature to examine its effect on the microstructure and composition as characterized with X-ray diffraction, Small angle X-ray scattering, Raman spectroscopy and CHNS-O elemental analyzer respectively. The microstructural changes in the carbon films at different pyrolysis temperature were then correlated with their electrochemical performance as investigated using galvanostat charge/discharge experiments, impedance spectroscopy and cyclic voltammetry. Selection of an appropriate current collector and optimizing the pyrolysis temperature yielded excellent cyclic stability and coulombic efficiency with 400 mAh g−1 reversible capacity after 100 cycles, nearly double to as reported in the literature
Two-channel conduction in YbPtBi
We investigated transport, magnetotransport, and broadband optical properties
of the half-Heusler compound YbPtBi. Hall measurements evidence two types of
charge carriers: highly mobile electrons with a temperature-dependent
concentration and low-mobile holes; their concentration stays almost constant
within the investigated temperature range from 2.5 to 300 K. The optical
spectra (10 meV - 2.7 eV) can be naturally decomposed into contributions from
intra- and interband absorption processes, the former manifesting themselves as
two Drude bands with very different scattering rates, corresponding to the
charges with different mobilities. These results of the optical measurements
allow us to separate the contributions from electrons and holes to the total
conductivity and to implement a two-channel-conduction model for description of
the magnetotransport data. In this approach, the electron and hole mobilities
are found to be around 50000 and 10 cm/Vs at the lowest temperatures (2.5
K), respectively.Comment: 6 page
Etiology, triggers and neurochemical circuits associated with unexpected, expected, and laboratory-induced panic attacks
Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states
- …
