36 research outputs found

    Early replication in pulmonary B cells after infection with marek's disease herpesvirus by the respiratory route

    Get PDF
    Natural infection with Marek's disease virus occurs through the respiratory mucosa after chickens inhale dander shed from infected chickens. The early events in the lung following exposure to the feather and squamous epithelial cell debris containing the viral particles remain unclear. In order to elucidate the virological and immunological consequences of MDV infection for the respiratory tract, chickens were infected by intratracheal administration of infective dander. Differences between susceptible and resistant chickens were immediately apparent, with delayed viral replication and earlier onset of interferon (IFN)-γ production in the latter. CD4+ and CD8 + T cells surrounded infected cells in the lung. Although viral replication was evident in macrophages, pulmonary B cells were the main target cell type in susceptible chickens following intratracheal infection with MDV. In accordance, depletion of B cells curtailed viremia and substantially affected pathogenesis in susceptible chickens. Together the data described here demonstrate the role of pulmonary B cells as the primary and predominant target cells and their importance for MDV pathogenesis. © 2009, Mary Ann Liebert, Inc.

    Developing community-based preventive interventions in Hong Kong: a description of the first phase of the family project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes the development of culturally-appropriate family-based interventions and their relevant measures, to promote family health, happiness and harmony in Hong Kong. Programs were developed in the community, using a collaborative approach with community partners. The development process, challenges, and the lessons learned are described. This experience may be of interest to the scientific community as there is little information currently available about community-based development of brief interventions with local validity in cultures outside the West.</p> <p>Methods</p> <p>The academic-community collaborative team each brought strengths to the development process and determined the targets for intervention (parent-child relationships). Information from expert advisors and stakeholder discussion groups was collected and utilized to define the sources of stress in parent-child relationships.</p> <p>Results</p> <p>Themes emerged from the literature and discussion groups that guided the content of the intervention. Projects emphasized features that were appropriate for this cultural group and promoted potential for sustainability, so that the programs might eventually be implemented at a population-wide level. Challenges included ensuring local direction, relevance and acceptability for the intervention content, engaging participants and enhancing motivation to make behavior changes after a brief program, measurement of behavior changes, and developing an equal partner relationship between academic and community staff.</p> <p>Conclusions</p> <p>This work has public health significance because of the global importance of parent-child relationships as a risk-factor for many outcomes in adulthood, the need to develop interventions with strong evidence of effectiveness to populations outside the West, the potential application of our interventions to universal populations, and characteristics of the interventions that promote dissemination, including minimal additional costs for delivery by community agencies, and high acceptability to participants.</p

    Outcome after extended follow-up in a prospective study of operable breast cancer: key factors and a prognostic index

    Get PDF
    In 1990, 215 patients with operable breast cancer were entered into a prospective study of the prognostic significance of five biochemical markers and 15 other factors (pathological/chronological/patient). After a median follow-up of 6.6 years, there were 77 recurrences and 77 deaths (59 breast cancer-related). By univariate analysis, patient outcome related significantly to 13 factors. By multivariate analysis, the most important of nine independent factors were: number of nodes involved, steroid receptors (for oestrogen or progestogen), age, clinical or pathological tumour size and grade. Receptors and grade exerted their influence only in the first 3 years. Progestogen receptors (immunohistochemical) and oestrogen receptors (biochemical) were of similar prognostic significance. The two receptors were correlated (r=+0.50, P=0.001) and displaced each other from the analytical model but some evidence for the additivity of their prognostic values was seen when their levels were discordant

    Temporal transcriptome changes induced by MDV in marek's disease-resistant and -susceptible inbred chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD.</p> <p>Results</p> <p>In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 6<sub>3</sub>, susceptible line 7<sub>2 </sub>and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 6<sub>3 </sub>and 7<sub>2 </sub>after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 6<sub>3 </sub>and RCS-M chickens that are both different from line 7<sub>2</sub>. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 7<sub>2</sub>; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 6<sub>3 </sub>and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 6<sub>3 </sub>and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 7<sub>2 </sub>and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility.</p> <p>Conclusions</p> <p>By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as <it>CD8α</it>, <it>IL8</it>, <it>USP18</it>, and <it>CTLA4</it>, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.</p

    Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

    Get PDF
    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs
    corecore