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Abstract Pancreatic ductal adenocarcinoma (PDA) is a lethal
disease that is usually diagnosed at late stage with few effec-
tive therapies. Despite the rapid progress on the genomics and
proteomics of the neoplastic cells, therapies that targeted the
pancreatic cancer cells proved to be inefficient, which promot-
ed the researchers to turn their attentions to the microenviron-
ment. Currently, various studies had proposed the microenvi-
ronment to be a contributing factor for PDA and pervasive
researches showed that macrophages within the malignancy
correlate with the malignant phenotype of the disease and
were reported to a new therapeutic target. Generally, the pro-
tumoral effects of macrophages can be summarized as angio-
genesis promotion, immunosuppression, matrix remodeling
and so on. Hence, a comprehensive understanding of the bio-
logic behaviors of macrophages and their critical role in PDA
development may provide new directions for the manage-
ments of the lethal disease. In this review, we will summarize
the recent advancements on macrophages as pivotal players in
PDA biology and the current knowledge about anti-
macrophages as a novel strategy against cancer, with the ex-
pectation that more efficient therapies will be developed in the
near future.
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Introduction

Pancreatic ductal adenocarcinoma (PDA) is a disastrous dis-
ease with an overall 5-year survival rate of less than 5 % and a
median survival of less than 6 months [1, 2]. It is estimated
that near 40,000 people die of PDA in 2014, rendering it the
fourth leading cause of cancer-related death in the USA [1].
Early-stage PDA is asymptomatic, while patients with symp-
toms were often diagnosed as advanced and metastatic disease
with less than 15 % are suitable for surgical resection [3],
which offers the only chance of cure. Hence, chemotherapy
is the only option for most patients, but gemcitabine, the stan-
dard first-line drug for PDA, brings only a modest survival
benefits because of chemoresistence [4].

Recently, tremendous progresses had been made on the
genomics and proteomics of PDA but no obvious progress
had achieved on the prognosis [5, 6], resulting in mounting
researchers turned their attentions to the microenvironment, a
component that is much more complex than the cancer cells
and plays a previously underestimated role in the initiation
and progression of the disease [7]. As the most abundant in-
filtrating leukocytes, pancreatic macrophages (so-called
tumor-associated macrophages (TAMs)) were stated to in-
volve in nearly all aspects of PDA biology and were stated
as a novel therapeutic target. In the subsequent context, we
will summarize the recent knowledge of how TAMs regulate
PDA biology and discuss the opportunities to treat PDA by
targeting macrophages.

Pancreatic cancer-associated macrophages
Macrophages are leukocytes deriving from the circulating

monocytes in the peripheral blood and responsible for homeo-
stasis [8]. In the recent years, line of evidence had tried to
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clarify how the monocytes were recruited and the mechanism
by which they differentiate to macrophages. CSF/CSFR is a
commonly accepted signaling that associates with the process
[9]. Besides, shattered reports showed that the PK2/PKR and
CCL2/CCR2 signaling also involve in leukocytes infiltrating,
associating with a poor prognosis [10, 11]. As summarized in
Fig. 1, other potent chemoattractants for monocytes include
VEGF, PDGF, EMAPII, endothelin, and so on [12]. Recently,
M1 and M2 had been described as the functional states of
macrophages. Specifically, M1 (so-called classically
activated macrophages) are trigged by Thl-related cytokines
and bacterial products, express high level of 1L-12, and are
tumoricidal. By contrast, M2 (so-called alternatively activated
macrophages) are activated by Th2-related factors, express
high level IL-10, and facilitate tumor progression [13]. The
pro-tumoral effects of M2 can be summarized as the promo-
tion of angiogenesis, facilitation of invasion and metastasis,
and the protection of the tumor cells from chemotherapy-
induced apoptosis [14]. As M1 and M2 were the extremities
of polarization, macrophages within the primary tumors tend
to be M 1-like and/or M2-like.

prominent ECM

enhanced
angiogenesis

enhanced CSCs
properity

In fact, the profiles of TAMs are more complex than we can
anticipate. First of all, both the phenotypes can be detected in a
single tumor exhibiting high heterogeneity, and their effects
can be offset by each other. Just as reported, prior studies had
identified multiple M 1-like and M2-like macrophages in var-
ious human malignancies and pathological studies showed
that the latter tend to, in most cases, associate with poor out-
come. Moreover, TAMs show great plasticity as they could
transform reciprocally with the ongoing changing microenvi-
ronment. As to PDA, studies also found various TAMs with
M2-like in predominance. Consistently, further analysis
showed that the M2-like macrophages (characterized by
CD68'CD163°CD204") associated with lymphatic metasta-
sis, distant metastasis, chemoresistence, and hence the surviv-
al of the PDA patients [15-21].

Generally, the regional microenvironment, which is fea-
tured by dense stroma infiltration, plays a decisive role in
recruiting monocytes and modulating macrophage phenotype
(Fig. 1). Since different area of a solid tumor exhibits distinct
microenvironment, TAMs differ in phenotype as well as func-
tion from one region to another. Typically, TAMs in the
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VEGF,PDGF
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Fig. 1 Origin of TAMs and their critical roles in PDA biology. TAMs
were derived from monocytes circulating in the peripheral blood. Once
recruited to the microenvironment, they underwent differentiation and
polarization toward M2 dues to the bioactive molecules within the
microenvironment. The transformed M2-like macrophages then exert
the pro-tumoral effects directly or indirectly. The inner circle describes
the recruitment of and polarization of cells; the outer circle describes the
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mechanisms whereby TAMs promote PDA progression. The upper box
showed the chemokines participated in monocyte recruitment and TAMs-
derived factors that regulate angiogenesis, desmoplasia, and CSCs
property. The lower box showed the detailed factors that promote
macrophages polarization. Sources of these factors include the
immunocytes, cancer cells, and other stromal cells
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hypoxia region polarized to M2, while those within the
normoxic regions tend to be M1-like [22]. Besides, recent
reports suggested that the macrophage phenotype was stage-
dependent. For example, the anti-inflammation M 1-like mac-
rophages, which usually locate in chronic pancreatitis where
tumor occurs, gradually converted to M2-like during tumor
initiation and progression [23-25], reflecting the plasticity as
well as heterogeneity of TAMs (Fig. 2). As a support, patho-
logical data revealed that M2-like macrophages were more
abundant in PDA samples than those diagnosed as chronic
pancreatitis [16]. As shown in Fig. 1, numerous factors had
been defined as mediators of TAM polarization [14, 26].
Whether they also polarize the pancreatic macrophages to-
ward M2 need further clarified.

TAMs and desmoplastic reaction

A prominent characteristic of PDA is the formation of a dense
stroma termed desmoplastic reaction, which can make up
80 % of the tumor mass in some patients [27]. Initially, the
stroma was reported to function as a barrier to limit PDA
progression. While, with research continues, many studies
re-recognized its pro-tumoral properties and proposed it to
be a therapeutic target dues to its critical role in cancer initia-
tion and progression [28]. In defining the source of the stroma,
there was report that, in chronic pancreatitis, overactivated
PSCs could produce extracellular matrix (ECM) proteins, ma-
jor component of the dense stroma. Consistently, Apte et al.
[29] identified activated PSCs in human PDA samples as the
specific source of ECM proteins and the major source of col-
lagen. Functional analysis revealed that elevated PSC activity
in human malignancy associated with poor prognosis of the
patients [30-32]. Collectively, these studies highlighted the
critical role of stroma in PDA progression and proposed that
PSCs might play a central role in the formation of the stroma.

Normal duct, PanIN1

M1
< &> Macrophage

Fig. 2 Schematic photograph that describe the initiation and progression
of PDA as well as macrophage phenotype changing during the process.
Chronic pancreatitis is a risk for PDA. Generally, PDA evolves from

PanIN2

PSCs are quiescent with lipid droplets in the cytoplasm.
Upon stimulation, they transformed into myofibroblasts with
the disappearance of the droplets and were characterized by oc-
SMA as well as ECM proteins secretion. Some previous stud-
ies had identified numerous factors as mediators of PSCs ac-
tivation and compelling evidence indicated that TAMs might
involve in the process via releasing the bioactive mediators.
Take PDGF and TGF-f1 for example, compelling evidence
had confirmed the fact that TAMs were specific sources of the
molecule, and the fact that they could induce the proliferation
of PSCs and promote ECM proteins secretion, respectively
[33]. In addition, there were some other TAMs-derived pro-
fibrotic factors, such as CTGF, CCL17, CCL22, and ROS
[34-37]. Correspondingly, there was report that blocking
CCR1, a chemokine receptor expressed by TAMs, resulted
in reduced TAM infiltration and decreased fibrosis, along with
prolonged survival [38]. Of note, activated PSCs can also
produce line of effective factors (PDGF, TGF-f1, IL-1, IL-
6, COX-2), which, in turn, perpetuate the activation of PSCs
[39-42].

Stroma is not just a static mechanical barrier; rather, it con-
sists of a dynamic component, whose turnover was also tightly
regulated, mainly by the matrix metalloproteinases (MMPs).
MMPs were, in general, secreted by the stromal cells, such as
TAMs, and function as regulators of tissue homeostasis by
ECM remodeling [43]. Indeed, most prior reports showed that
MMPs were overexpressed in most human malignancies, cor-
relating with the malignant phenotype of the disease. For ex-
ample, studies of skin and cervical cancer showed that TAMs-
derived MMP9 could enhance angiogenesis via promoting
endothelial cells (ECs) proliferation [44, 45]. As to PDA,
Bergers and colleagues found the similar results as they
showed that TAMs-derived MMP9 also involved in the stro-
ma turnover by degrading the ECM proteins. More important-
ly, they also showed in the study that degraded ECM de-
creased the mechanical stress applied by the stroma on the
ECs, leading to enhanced angiogenesis and tumor distant
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intraepithelial neoplasia, accompanied by the macrophage phenotype
switching from the anti-inflammation M1-like to pro-tumoral M2-like
during the process
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metastasis [46, 47]. Besides, there were other upregulated
MMPs members during PDA progression, whether they par-
ticipate in stroma needs further clarified.

TAMs and angiogenesis

Angiogenesis could be defined as the growth of new blood
vessels from the existing vasculatures, a process usually oc-
curs during the female reproduction cycle and pathological
conditions, including cancer. Indeed, in order to grow beyond
a certain size, tumors need a dedicated blood supply to provide
oxygen and other essential nutrients [48]. However, unlike
normal blood vessels, blood vessels from the angiogenic pro-
cess are dilated with an irregular shape and decreased function
and are regulated by the signaling from the cancer cells and
stromal cells, including TAMs [49, 50].

As with other solid tumors, PDA also rely on angiogenesis
to grow and metastasize [51, 52]. The role of TAMs in angio-
genesis was initially recognized due to the correlations be-
tween the number of infiltrating TAMs and the vascular den-
sity, as ablation of macrophages by targeting integrin o431 or
myeloid PI3Kyy resulted in decreased blood vessels and re-
duced tumor burden in mice model of PDA [53, 54]. The
study was supported by Tugues [55], who found that conver-
sion of macrophages toward M2-like by depleting histidine-
rich glycoprotein (HRG) leading to excessive pro-angiogenic
gene expression and increased tumor volume. The mechanism
whereby TAMs promote angiogenesis depends on the
chemokines, enzymes, and growth factors it secreted, such
as VEGF, PDGF, and TGF-f3 [56]. Besides, in PDA, pancre-
atic macrophages were known to secret enzymes, such as
MMPs and uPAR, to degrade the ECM, and thus modulate
the mechanical stress on the endothelial cells (ECs), resulting
in enhanced migration along with proliferation and finally
enhanced angiogenesis.

Targeting angiogenesis emerged as an effective approach
for cancer therapy. A typical case is that the Food and Drug
Administration (FDA) approved the usage of bevacizumab in
metastatic colorectal cancer patients [6]. Unfortunately, such
success does not occur in PDA [57]. Instead, a study by Olive
and colleagues [58] proposed “vascular promotion” as a new
strategy for PDA managements. They showed in mice model
that inhibition of the stroma sonic hedgehog (SHH) pathway
could increase vascularization, leading to increased delivery
of chemotherapeutic agents to the tumors and greater anti-
cancer efficacy. Potential explanations for the contradiction
are likely that, the accumulating stroma gradually limits the
growth of blood vessels during PDA progression, and thus
poor blood perfusion and decreased chemoagent delivery.

Of note, poor blood perfusion often leads to overexpression
of hypoxia-inducible factor-1 (HIF-1) in solid tumors, includ-
ing PDA [59]. As an important transcription factor, HIF-1 was
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known to regulate the expression of various chemokines that
affect angiogenesis. For example, HIF-1-related CXCL12/
CXCR4 signaling is potent chemoattractant for ECs [60]. In-
terestingly, Andrea Casazza also revealed the role of hypoxia
in modulating the phenotype of pancreatic TAMs. He showed
in mice model that hypoxia could upregulate Nrp-1 expression
in TAMs, which functions to recruit the TAMs to the hypoxic
region, where they polarized to M2-like and exert anti-
immunity response [22].

TAMs and CSCs

Mounting evidence suggested that malignancies are heteroge-
neous as their growth and propagation depend on a small
subset of cells termed cancer stem cells (CSCs) and defined
by their surface marker. As with the normal stem cells, CSCs
posses the ability to self-renew and produce differentiated
progeny. Prior studies had isolated multiple CSCs from can-
cers of the prostate, breast, and colorectal [61-63], and accu-
mulating evidence showed that they involved in tumor angio-
genesis, distant metastasis, and chemoresistence [64, 65]. As
to PDA, Simeone DM showed that CD44"CD24 " ESA™ cells
isolated from the primary PDA samples posses the ability of
self-renew and producing differentiated progeny. The study
further identified several aberrantly activated signaling asso-
ciating with metastasis and self-renew [66]. In addition,
Hermann found that CD133" cells in PDA also posses the
characteristics of CSCs because as few as 500 of the cells gave
birth to tumors that recapitulated the primary tumor when they
were injected into immunocompromised mice [67]. This
raised the question that whether there is other types of CSCs
and cells express all the four markers exhibit stronger CSCs
capacity? In the study by Hermann et al. [67], the authors
reported an overlap of 14 % between CD44 CD24 ESA"
and CD133" cells but their stemness need to be further
clarified.

As mounting evidence support the paradigm that CSCs
favor cancer progression via multiple pathways, emerging
studies were tried to investigate the formation and mainte-
nance of CSCs property, which were mainly affected by the
regional microenvironment. Ding showed in vitro that TAMs
could upregulate the stemness and subsequent invasion and
migration of breast cancer [68]. Consistently, Hideaki and
colleagues [69] reported in mice model that TAMs derived
milk-fat globule-epidermal growth factor-VIII (MFG-ES) en-
hance CSC properties of colon and lung cancer by activating
JAK/STAT3 and Sonic Hedgehog (SHH) pathways. Collec-
tively, these researches linked cancer TAMs with CSCs and
gave a hint that the pancreatic CSCs might also be regulated
by TAMs.

IFN-stimulated gene 15 (ISG15) is a 165-amino acid (17-
kDa) protein preferentially secreted by TAMs with a
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Fig. 3 Overview of the recent

research focus of macrophages in

cancer. The life spans of (1 (2) 3)
macrophages include monocyte Blood vessel Recuitment Transformation Pro-tumoral

recruitment, differentiation,
polarization, as well as the
process they exert their function.
The recent studies were mainly
tried to clarify how the monocytes
were recruited to the
microenvironment, how the
macrophages were polarized, and
how the transformed cells exert
their effects

previously underappreciated role in cancer progression [70,
71]. Susana Guerra reported that pancreatic CSCs derived
IFN-f could promote TAMs to secret ISG15, which could,
in turn, enhance the stemness of PDA both in vitro and
in vivo, leading to reinforced capacities of self-renewal and
tumorigenicity [72]. In a separate study, depletion of PDA

Table 1

<& Monocytes
% MO/M1-macrophage@ Cancer cell

Cancer progression

S&: M2-macrophage

macrophages by inhibiting CSF1R resulted in a significant
reduction of cells expressing ALDH (another reported marker
of pancreatic CSCs), and improved chemotherapeutic efficacy
and anti-tumor responses. Of note, PDA-educated macro-
phage-derived conditioned media (CM) was sufficient to en-
hance CSCs properties of murine pancreatic cancer cells in

Excellent studies that target macrophages as a new strategies against cancer

Excellent studies targeting monocyte recruitment

Signaling Comments

Refs

PK2/PKR

Gemcitabine in combine with PKRA1, a small molecule PK2 antagonist, could

(1]

prolong the survival of pancreatic xenograft models via blocking myeloid

cell migration
CCL2/CCR2

In orthotropic model of murine PDA, CCR2 inhibition depletes monocytes and

[10]

macrophages within the primary tumor, resulting in decreased tumor growth

CSF/CSFR

CSF-1R inhibition with RG7155, a monoclonal antibody, strongly reduces [9]

pro-tumoral macrophages and enhances the immunity, leading to striking

clinical objective

responses in diffuse-type giant cell tumor patients

GM-CSF/GM-CSFR

Kras mutation in pancreatic ductal cells triggers the production of GM-CSF, which,

[74]

in turn, promotes the recruitment of monocytes, leading the accumulation of
immunosuppressive macrophages and cancer progression

Excellent studies targeting macrophage polarization
Cox-2

progression
Lactate

Cox-2 and its products involved extensively in M2 polarization and hence cancer

Lactic acid produced by tumor cells functions in M2 polarization, a process mediated by

[75, 76]

771

hypoxia-inducible factor 1, and favors tumor growth via lactate-induced arginase 1 by

macrophages
SHIP

The src homology-2 domain containing inositol polyphosphate 5-phosphatase (SHIP)

[78]

functions to repress M2 skewing. Peritoneal macrophages from SHIP ™~ mice promote

tumor growth
Legumain
against TAMs,

Vaccine against M2-associated molecule legumain induced a robust CD8T cell response

[79]

resulting in the suppression of tumor growth

Excellent studies that targeting macrophages survival
Yondelis

Yondelis, a antitumor agent that inhibits NF-Y, has a unique toxicity for TAMs, leading to

[80]

decreased macrophages in the microenvironment

Clodronate

Treatment with clodronate encapsulated in liposomes (clodrolip) depleted macrophages

[20]

in xenograft model of rhabdomyosarcoma, resulting in decreased tumor growth
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this model [73]. Overall, these data suggested a close correla-
tion between TAMs and CSCs in PDA. However, further
study is still needed to determine the detailed crosstalk be-
tween them and how these pathways could best be targeted
for the patients.

Targeting macrophage emerges as a novel
anti-cancer strategy

Considering the functional significance of macrophages in
cancer initiation and progression, mounting studies had con-
ducted to evaluate the efficiency of anti-macrophage as a nov-
el strategy against cancer. Generally, the life span of macro-
phage includes monocytes recruitment, differentiation, polar-
ization, and the pro-tumoral process (Fig. 3). Accordingly, the
anti-macrophage strategies include the inhibition of the mono-
cytes recruitment as well as transformations, and the ablation
the macrophages directly. Some excellent studies of such strat-
egies are listed in Table 1. Collectively, these studies proposed
anti-macrophages to be a novel approach for cancer
management.

Concluding remarks

As evidence continually mounts to support that TAMs dictate
the biologic behavior of PDA, it is undoubted that much work
was needed to understand the molecular machinery whereby
TAMs polarize and transform, and much is yet to be learned
about the crosstalk between TAMs and other resident cells.
Such studies are likely to yield important insights into PDA
biology, which may ultimately improve therapeutic ap-
proaches and outcomes for the patients.
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