428 research outputs found

    Hadron spectroscopy and static quark potential in full QCD: A comparison of improved actions on the CP-PACS

    Get PDF
    We present first results from a full QCD calculation on the CP-PACS, comparing various actions at a11GeVa^{-1} \sim 1 GeV and mπ/mρ0.7m_\pi/m_\rho \approx 0.7--0.9. We use the plaquette and a renormalization group improved action for the gluons, and the Wilson and the SW-Clover action for quarks. We find that significant improvements in the hadron spectrum results from improving the quarks, while the gluon improvement is required for a rotationally invariant static potential. An ongoing effort towards exploring the chiral limit in full QCD is described.Comment: 6 pages, based on talks presented by R. Burkhalter and T. Kaneko at Lattice97, Edinburg

    Quenched Approximation Artifacts: A study in 2-dimensional QED

    Full text link
    The spectral properties of the Wilson-Dirac operator in 2-dimensional QED responsible for the appearance of exceptional configurations in quenched simulations are studied in detail. The mass singularity structure of the quenched functional integral is shown to be extremely compicated, with multiple branch points and cuts. The connection of lattice topological charge and exactly real eigenmodes is explored using cooling techniques. The lattice volume and spacing dependence of these modes is studied, as is the effect of clover improvement of the action. A recently proposed modified quenched approximation is applied to the study of meson correlators, and the results compared with both naive quenched and full dynamical calculations of the same quantity.Comment: 34 pages (Latex) plus 9 embedded figures; title change

    Decay Constants of Heavy-Light Mesons

    Full text link
    The decay constants of the heavy-light pseudoscalar mesons are studied in a high statistics run using the Wilson action at β=6.0\beta=6.0 and β=6.2\beta=6.2, and the clover action at β=6.0\beta=6.0. The systematics of O(a)O(a) discretisation errors are discussed. Our best estimates of the decay constants are: fDf_D = 218(9) MeV, fD/fDsf_D/f_{Ds} = 1.11(1) and we obtain preliminary values for fBf_B.Comment: at the Dallas Lattice Conference, October 1993. 3 pages in a single postscript file, uuencoded form. Rome Preprint 93/98

    I=2 ππ\pi\pi Scattering Phase Shift with two Flavors of O(a)O(a) Improved Dynamical Quarks

    Get PDF
    We present a lattice QCD calculation of phase shift including the chiral and continuum extrapolations in two-flavor QCD. The calculation is carried out for I=2 S-wave ππ\pi\pi scattering. The phase shift is evaluated for two momentum systems, the center of mass and laboratory systems, by using the finite volume method proposed by L\"uscher in the center of mass system and its extension to general systems by Rummukainen and Gottlieb. The measurements are made at three different bare couplings β=1.80\beta = 1.80, 1.95 and 2.10 using a renormalization group improved gauge and a tadpole improved clover fermion action, and employing a set of configurations generated for hadron spectroscopy in our previous work. The illustrative values we obtain for the phase shift in the continuum limit are δ\delta(deg.) =3.50(64)= - 3.50(64), 9.5(30) - 9.5(30) and 16.9(64) - 16.9(64) for s(GeV)\sqrt{s}({\rm GeV}) =0.4=0.4, 0.6 0.6 and 0.8 0.8, which are consistent with experiment.Comment: 40 page

    Full QCD simulation on CP-PACS

    Get PDF
    A status report is made of an on-going full QCD study on the CP-PACS aiming at a comparative analysis of the effects of improving gauge and quark actions on hadronic quantities and static quark potential. Simulations are made for four action combinations, the plaquette or an RG-improved action for gluons and the Wilson or SW-clover action for quarks, at a11.1a^{-1} \approx 1.1-1.3GeV and mπ/mρ0.7m_\pi/m_\rho \approx 0.7-0.9. Results demonstrate clearly that the clover term markedly reduces discretization errors for hadron spectrum, while adding six-link terms to the plaquette action leads to much better rotational symmetry in the potential. These results extend experience with quenched simulations to full QCD.Comment: Talk presented by K. Kanaya at the International Workshop on ``LATTICE QCD ON PARALLEL COMPUTERS'', 10-15 March 1997, Center for Computational Physics, University of Tsukub

    Non-perturbative renormalization of meson decay constants in quenched QCD for a renormalization group improved gauge action

    Get PDF
    Renormalization constants (ZZ-factors) of vector and axial-vector currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schr\"odinger functional method. Non-perturbative values of ZZ-factors turn out to be smaller than one-loop perturbative values by O(15O(15%) at lattice spacing of a1a^{-1}\approx 1 GeV. The pseudoscalar and vector meson decay constants calculated with the non-perturbative ZZ-factors show a much better scaling behavior compared to previous results obtained with tadpole improved one-loop ZZ-factors. In particular, the non-perturbative ZZ-factors normalized at infinite physical volume show that scaling violation of the decay constants are within about 10% up to the lattice spacing a11a^{-1}\sim 1 GeV. The continuum estimates obtained from data in the range a1=a^{-1}= 1 -- 2 GeV agree with those determined from finer lattices (a124a^{-1}\sim 2-4 GeV) with the standard action.Comment: 19 pages, 18 eps figures. Corrected addres

    Lattice QCD without topology barriers

    Get PDF
    As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.Comment: Plain TeX source, 26 pages, 4 figures include

    Charmless Two-body Baryonic B Decays

    Full text link
    We study charmless two-body baryonic B decays in a diagramatic approach. Relations on decay amplitudes are obtained. In general there are more than one tree and more than one penguin amplitudes. The number of independent amplitudes can be reduced in the large m_B limit. It leads to more predictive results. Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.

    Radial Correlations between two quarks

    Get PDF
    In nuclear many-body problems the short-range correlation between two nucleons is well described by the corresponding correlation in the {two}-body problem. Therefore, as a first step in any attempt at an analogous description of many-quark systems, it is necessary to know the two-quark correlation. With this in mind, we study the light quark distribution in a heavy-light meson with a static heavy quark. The charge and matter radial distributions of these heavy-light mesons are measured on a lattice with a light quark mass about that of the strange quark. Both distributions can be well fitted upto r approx 0.7 fm with the exponential form w_i^2(r), where w_i(r)=A exp(-r/r_i). For the charge(c) and matter(m) distributions r_c approx 0.32(2) fm and r_m \approx 0.24(2) fm. We also discuss the normalisation of the total charge (defined to be unity in the continuum limit) and matter integrated over all space, finding 1.30(5) and 0.4(1) respectively for a lattice spacing approx 0.17 fm.Comment: 8 pages, 3 ps figure

    The Semileptonic Decays BπlνB\to\pi l\nu and DπlνD\to\pi l\nu from Lattice QCD

    Full text link
    We present a lattice QCD calculation of the form factors and differential decay rates for semileptonic decays of the heavy-light mesons BB and DD to the final state πlν\pi l\nu. The results are obtained with three methodological improvements over previous lattice calculations: a matching procedure that reduces heavy-quark lattice artifacts, the first study of lattice-spacing dependence, and the introduction of kinematic cuts to reduce model dependence. We show that the main systematics are controllable (within the quenched approximation) and outline how the calculations could be improved to aid current experiments in the determination of~Vub|V_{ub}| and~Vcd|V_{cd}|.Comment: 35 pp, 12 fig
    corecore