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1550-7998=20
Renormalization constants (Z-factors ) of vector and axial-vector currents are determined non-
perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole-
improved clover quark action using the Schrödinger functional method. Nonperturbative values of
Z-factors turn out to be smaller than 1-loop perturbative values by O(15%) at a lattice spacing of a�1 �
1 GeV. The pseudoscalar and vector meson decay constants calculated with the nonperturbative
Z-factors show a much better scaling behavior compared to previous results obtained with tadpole-
improved one-loop Z-factors. In particular, the nonperturbative Z-factors normalized at infinite physical
volume show that the scaling violations of the decay constants are within about 10% up to the lattice
spacing a�1 � 1 GeV. The continuum estimates obtained from data in the range a�1� 1–2 GeV agree
with those determined from finer lattices (a�1 � 2� 4 GeV) with the standard action.

DOI: 10.1103/PhysRevD.70.074502 PACS numbers: 12.38.Gc
I. INTRODUCTION

Reliable prediction of physical quantities from lattice
QCD calculations requires a good control of scaling vio-
lations. For this purpose, several improved actions have
been tested and applied to large scale systematic simula-
tions. For most physical quantities, such as quark masses
and hadronic matrix elements, one has to calculate in
addition renormalization constants (Z-factors).
Nonperturbative methods to determine various Z-factors
have been developed and utilized for several actions.

The CP-PACS collaboration carried out systematic
simulations for two-flavor full QCD [1] using a renormal-
ization group (RG) improved gauge action [2] and a
tadpole-improved [3] clover quark action [4] and reported
results for the spectrum, quark masses and meson decay
constants. Since nonperturbative Z-factors were not avail-
able for this action combination, the analysis had to rely
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on one-loop perturbative values. The result showed that
the meson decay constants in both quenched and full
QCD suffer from large scaling violations at
a�1 � 1� 2 GeV which hinder continuum extrapolations.
It was not clear if this observation hinted at an inherent
difficulty of improved actions for matrix elements at
coarse lattice spacings or a perturbative treatment of the
Z-factors was the issue. A nonperturbative determination
of Z-factors was evidently needed.

As a first step toward a systematic study of nonpertur-
bative renormalization for this action, we apply the
Schrödinger functional (SF) method [5–8] to calcula-
tions of Z-factors for vector (ZV) and axial-vector (ZA)
currents in quenched QCD with the same improved ac-
tion. The SF method has been applied to the nonpertur-
batively O�a� improved Wilson action. In contrast, our
action combination hasO�ag4� error, since the coefficient
of the clover term is determined by tadpole-improved
perturbation theory to one-loop order. Therefore our
study involves an examination whether the SF method
successfully works for this action

In the SF method, Z-factors are determined at various
couplings for a fixed physical size L. In this case, the
Z-factors contain terms ofO�ag4=L� in addition to that of
O�a��. We expect that one can remove the O�ag4=L�
terms by taking the infinite volume limit. We calculate
Z-factors both at a finite fixed physical volume and at the
02-1  2004 The American Physical Society



K. IDE et al. PHYSICAL REVIEW D 70 074502
infinite volume and compare the scaling properties of
decay constants with these two choices of Z-factors.

When we calculate Z-factors for large couplings and on
large lattices, we encounter ‘‘exceptional configurations’’
for which observables take abnormally large values. We
estimate systematic uncertainties due to such configura-
tions, propagate them to systematic error estimations of
decay constants, and argue that they do not alter our
conclusions on scaling properties.

The organization of this paper is as follows. In Sec. II
we describe calculation method focusing on features of
applying the SF method to the RG-improved action.
Details of the analysis for ZV and ZA are given in
Sec. III. With these Z-factors, we study the scaling behav-
ior of decay constants of vector (f
) and pseudoscalar
(f�) mesons in Sec. IV. Sec. V is devoted to conclusions.
Parts of this work have already been reported in
Refs. [9,10].
II. CALCULATION METHOD

A. Action and Currents

The RG-improved gauge action we employ has the
form

Sg �

6

�
c0

X
x;�;�

UP;���x� 	 c1
X
x;�;�

UR;���x�
�
; (1)

where  � 6=g2 with the bare coupling constant g, and
UP (UR) is the trace of the product of link variables
around a plaquette (6-link rectangular loop). In a sum
over loops, each oriented loop appears once. The coeffi-
cients c1 � �0:331 and c0 � 1� 8c1 � 3:648 are fixed
by an approximate RG analysis [2].

The clover quark action [4] is defined by

Sq �
X
x;y

 �x�Dx;y �y�; (2)
Dx;y � �x;y � �
X
�

f�1� ���Ux;��x	�̂;y 	 �1

	 ���U
y
x;��x;y	�̂g � �x;ycSW�

X
�<�

 ��F��; (3)
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where � is the hopping parameter and F�� is a lattice
discretization of the field strength. For the clover coeffi-
cient cSW , we adopt a tadpole-improved value with one-
loop estimate of the plaquette hW1�1i � 1

3 hUP;��i given
by

cSW � hW1�1i�3=4 � �1� 0:8412=��3=4; (4)

since we use the one-loop value of the plaquette reprodu-
ces measured values well.

For ZV , we investigate the vector Ward identity of the
unimproved current Va� since the particular SF setup we
use yields the same value of ZV for improved and unim-
proved currents. On the other hand, we study an improved
current for ZA defined by

�AI�a��x� � Aa��x� 	 acA
1

2
�@�� 	 @��Pa�x�; (5)

where @�� and @� are lattice forward and backward de-
rivatives and Pa�x� is the pseudoscalar density. We use the
one-loop value for the improvement coefficient cA �
�0:0038g2 [11].

B. Implementation for RG-Improved Action

We follow the SF method of Ref. [8] for the RG-
improved gauge action. Taking an L3 � T lattice, we
impose the periodic boundary condition in the spatial
directions and the Dirichlet boundary condition in the
temporal direction.

The boundary counter terms for the RG-improved
action are determined [12] so that the classical field
equations are satisfied. The total action reads

Sg �

6

X
x

XT
x4�0

�
c0
X
�;�

wP���x4�UP;���x�

	 c1
X
�;�

wR���x4�UR;���x�
�
; (6)

with the weight factors wP���x4� and wR���x4� given by
wP���x4� �

8>>>><
>>>>:
ct �x4 � 0 or x4 � T � a� and �� � 4 or � � 4�
0 x4 � T and �� � 4 or � � 4�
1
2 cs �x4 � 0 or x4 � T� and �� � 4 and � � 4�
1 otherwise.

(7)
-2
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wR���x4� �

8>><
>>:

3
2 when 2 links of the rectangular touch a boundary
0 when the rectangular is completely included in an boundary
1 otherwise.

(8)
We take the tree-level value of cs � ct � 1. (One-loop
values of cs and ct [13] were not known when we started
this work.) Boundary counter terms are not included for
the clover quark action. In other words, the boundary
coefficients ~cs and ~ct of Ref. [8] are set to the tree-level
values, ~cs � ~ct � 1.

C. Details of Calculation Method

We calculate Z-factors for the range  � 8:0� 2:2.
The smallest value  � 2:2 is chosen to lie in the range
 � 2:575� 2:184 (inverse lattice spacing
a�1 � 1� 2 GeV) where data for f
 and f� exist [1].
Simulations are made with a 5-hit pseudo-heat-bath al-
gorithm mixed with an over-relaxation algorithm in the
ratio of 1:4. We analyze 200 – 20000 configurations
separated by 100 sweeps each. The lattice geometry is
set to T � 2L for both ZV and ZA. At each, Z-factors are
determined for at least two lattice sizes in order to inter-
polate or extrapolate them to a fixed physical volume.
Lattice size and number of analyzed configurations are
listed in Table I.

Calculations of Z-factors are carried out at zero quark
mass, where the quark mass mq is defined by the PCAC
relation @�Aa� � 2mqP

a in the continuum notation. The
TABLE I. Simulation parameters and Z-factors at simulation poin
exceptional configurations, we quote only central values and statisti
at  � 2:8 and 123 � 24 lattice at  � 8:0.

 L3 � T �c mq

2.2 43 � 8 0.139 281(56) -0.000 529(495) 0.
83 � 16 0.140 570(15) 0.001 493(399) 0.

2.4 43 � 8 0.136 933(21) -0.000 764(337) 0.
83 � 16 0.137 481(04) -0.000130(395) 0.

2.6 43 � 8 0.135 558(08) -0.000 276(341) 0.
83 � 16 0.135 701(10) -0.000 464(154) 0.

2.8 43 � 8 0.134 532(10) 0.000 002(396) 0.
83 � 16 0.134 515(07) -0.000105(139) 0.
123 � 24 0.134 554(08) 0.000 525(111) 0.
163 � 32 0.134 587(09) 0.000 663(139) 0.

3.125 123 � 24 0.133 209(01) -0.000 039(091) 0.
163 � 32 0.133 219(05) -0.000 092(060) 0.

4.0 83 � 16 0.131094(04) -0.000 302(086) 0.
163 � 32 0.131083(01) 0.000160(044) 0.

6.0 83 � 16 0.128 898(03) -0.000191(061) 0.
163 � 32 0.128 891(01) -0.000 060(023) 0.

8.0 83 � 16 0.127869(02) 0.000138(041) 0.
123 � 24 0.127870(01) 0.000 576(331) 0.
163 � 32 0.127870(01) 0.000 021(017) 0.

074502
actual procedure to measure mq is the same as in Ref. [7].
We define a time-dependent quark mass by

mq�x4� �
1
2 �@

�
0 	 @0�fA�x4� 	 cAa@�0@0fP�x4�

2fP�x4�
; (9)

where fA is the axial-vector and pseudoscalar correlator
and fP is the pseudoscalar and pseudoscalar correlator.
The quark mass mq is defined by an average of mq�x4�
over a range of time slices around x4 � T=2;

mq �
1

2n	 1

Xan
t��an

mq

�
T
2
	 t

	
; (10)

where n defines the range and depends on simulation
parameters.
Z-factors are determined from correlators of pseudo-

scalar operators Pa and P0a at the boundaries and/or
currents Va� and �AI�a� at a finite time slice. We employ
the notations defined by

f1 � �
1

3L6
hP0aPai; (11)

fV�x4� �
a3

6L6

X
x
i+abchP0aVb0 �x�P

ci; (12)
ts. For 83 � 16 lattices at  � 2:2 and 2.4 where we encounter
cal errors. No calculations of ZA were made for 163 � 32 lattice

ZV #conf for ZV ZA #conf for ZA

7499(11) 2000 0.7667(52) 2000
7067(12) 20 000 0.7350(610) 20 000
7995(10) 1000 0.8150(24) 2000
7652(04) 10 000 0.7525(204) 10 000
8265(05) 2000 0.8474(16) 2000
8056(05) 500 0.8208(18) 2000
8482(06) 1000 0.8667(18) 1000
8312(04) 500 0.8482(13) 1000
8268(03) 500 0.8520(17) 1000
8231(06) 500
8540(02) 500 0.8689(09) 500
8527(01) 500 0.8672(08) 500
8972(02) 500 0.9068(06) 500
8938(01) 500 0.9060(04) 300
9366(01) 300 0.9425(03) 300
9337(01) 300 0.9398(02) 300
9545(01) 300 0.9600(02) 300
9523(01) 300
95151(3) 300 0.9565(01) 200
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−0.008

−0.006

−0.004

−0.002

0.000

0.002

m
q(

x 4)

FIG. 2. Effective quark mass mq�x4� at  � 2:6 on an 83 �
16 lattice. Horizontal solid lines represent fitting range, and
fitted value and error.

K. IDE et al. PHYSICAL REVIEW D 70 074502
fAA�x4; y4� � �
a6

6L6

X
x;y
+abc+cdehP0d�AI�a0�x��AI�

b
0�y�P

ei:

(13)

Renormalization constants are then extracted from

ZV �
f1
fV�

T
2�
; (14)

ZA �
























f1

fAA�
3T
8 ;

5T
8 �

s
: (15)

The lattice spacing necessary to set the physical size is
determined from the string tension






 

p
� 440 MeV.We fit

values of a





 

p
[1,14] to a fitting form [15]

�a





 

p
��� � f���1	 c2â2�� 	 c4â4�� 	 � � ��=c0;

â�� �
f��
f�1�

; (16)

where f�� is the two-loop scaling function of the SU(3)
gauge theory, cn’s are parameters to describe deviation
from the two-loop scaling, and 1 is a reference point.
Choosing 1 � 2:4, the parameters

c0 � 0:5443�97�; c2 � 0:390�38�;

c4 � 0:049�12�
(17)

reproduce the measured values well.
III. RENORMALIZATION CONSTANTS

A. Results at Simulation Points

Calculations of Z-factors do not present any difficulty
from  � 8:0 down to 2.6 for all lattice sizes, and at  �
2:4 and 2.2 on a small lattice of 43 � 8. For a larger 83 �
0.1340 0.1350 0.1360
κ

−0.02

0.00

0.02

0.04

0.06

m
q

FIG. 1. mq versus � at  � 2:6 on an 83 � 16 lattice. Filled
symbols show measured points. The open symbol represents �c.
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16 lattice at  � 2:4 and 2.2, however, we encounter
‘‘exceptional configurations.’’ Deferring discussions of
this issue, let us first summarize results for the nonexcep-
tional case.

We first determine �c for each  and L=a. For this
purpose simulations are carried out at several values of �
around an estimated �c in which mq is determined by
Eq. (10); we employ the fitting range given by n � 0 for
L=a � 4 lattices, n � 1 for L=a � 8 lattices at  � 2:4
and 2.2, and n � 2 for L=a � 8 at other values of  and
L=a � 16 lattices. We determine �c by a linear fit in � as
illustrated in Fig. 1 for an 83 � 16 lattice at  � 2:6.
0 4 8 12 16 20 24 28 32
x4

0.851

0.852

0.853

0.854

0.855

0.856

Z
V

FIG. 3. ZV as a function of time slice at  � 3:125 on a 163 �
32 lattice. Horizontal dashed lines represent ZV at x4 � T=2 �
16.
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0 4 8 12 16 20 24 28 32
x4

0.862

0.864

0.866

0.868

0.870
Z

A

FIG. 4. Values of ZA as a function of time slice at  � 3:125
on a 163 � 32 lattice. Horizontal dashed lines represent ZA at
x4 � �5=8� � T � 20.

0 1000 2000
sweep

0

5

10

15

f P

0 1000 2000
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

f A

FIG. 6. Time history of fA and fP at  � 2:6 on an 83 � 16
lattice.
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Results for �c are given in Table I. When we perform
simulations for Z-factors at �c, mq is also calculated for
confirmation. A typical result for the effective quark mass
mq�x4� is shown in Fig. 2. It exhibits a reasonable plateau.
Values of mq at �c are given in the fourth column of
Table I. They are consistent with zero within an accuracy
of 10�3 at worst. Since �c is tuned well, errors of �c are
not taken into account in the error estimation of Z-factors.

Figs. 3 and 4 show typical plots of ZV and ZA as a
function of time slice. We observe good plateaux for all
cases, except for a small temporal lattice size of L=a � 8
at strong coupling of � 2:4 and 2.2.We thus find that the
SF method works successfully for our action, albeit there
0 5000 10000
sweep

0

500

1000

1500

2000

f P

0 5000 10000
−50

−25

0

25

50

f A

FIG. 5. Time history of fA and fP at  � 2:4 on an 83 � 16
lattice.
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are O�ag4� errors rather than O�a2� errors. Results for
Z-factors at simulation points are given in Table I.

We now discuss the issue of ‘‘exceptional configura-
tions.’’ Among our parameter sets, anomalously large
values appear in the ensemble of hadron correlators on
an 83 � 16 lattice at  � 2:4 and 2.2. We illustrate the
situation in Fig. 5, where we plot the time history of fA
and fP at  � 2:4. No large spikes appear for larger  on
the same size lattice, as shown in Fig. 6 for data at  �
2:6. Note that a much finer vertical scale is employed in
the latter figure. Large spikes appear also in the ensem-
bles of f1, fV and fAA necessary for evaluating Z-factors.
Such exceptional configurations make it difficult to de-
termine mq, �c and Z-factors precisely.
0 2000 4000 6000 8000 10000
fP

0

10

20

30

fr
eq

ue
nc

y

FIG. 7. Histogram of fP at  � 2:4 on an 83 � 16 lattice.
Intervals in x-axis are 50.
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0.0 0.1 0.2 0.3 0.4
a/L

0.6

0.7

0.8

0.9

1.0

Z
A

ZA

SF, L=0.8 fm

ZA

SF, L=∞

FIG. 9. Volume dependence of ZA. Symbols are the same as in
Fig. 8.
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We suspect that the spikes are caused by the appear-
ance of very small or even negative eigenvalues of the
Dirac operator toward strong coupling. Such eigenvalues
would be suppressed in full QCD by the quark determi-
nant, and in this sense we expect exceptional configura-
tions to be an artifact of quenched QCD. In quenched
QCD, however, ‘‘exceptional configurations’’ cannot be
distinguished from ‘‘normal’’ ones on some rigorous ba-
sis. In fact, histograms of f ’s have a long tail toward very
large values as shown in Fig. 7.We then adopt the strategy
of estimating Z-factors by removing from the ensemble
average configurations having values above some cutoff.
The uncertainties associated with this procedure are esti-
mated by varying the cutoff, and will be propagated to
systematic errors of Z-factors at fixed physical volume.
Detailed description of this procedure will be given in
Sec. III C.

B. Z-factors at Fixed Physical Volume

We plot ZV and ZA determined for various sizes and 
in Figs. 8 and 9, respectively, as a function of a=L. There
are three or four data points at  � 8:0 and 2.8 for ZV ,
and at  � 2:8 for ZA. These data show a linear behavior
in a=L, which is consistent with the expectation that
Z-factors for our action have O�ag4=L� errors. Therefore
we adopt a linear ansatz to extrapolate or interpolate
Z-factors to the physical volume of L � 0:8 fm (normal-
ized at  � 2:6 and L=a � 8) and to L � 1, as shown in
these figures. We denote Z-factors at a fixed physical
volume as ZSF;L�0:8fm

V;A and ZSF;L�1
V;A . Numerical values

are given in Table II.
0.0 0.1 0.2 0.3 0.4
a/L

0.6

0.7

0.8

0.9

1.0

Z
V

ZV

SF, L=0.8 fm

ZV

SF, L=∞

FIG. 8. Volume dependence of ZV . Filled circles and solid
lines are measured data and linear fits to them. Values of  are,
from top to bottom, 8.0, 6.0, 4.0, 3.125, 2.8, 2.6, 2.4 and 2.2,
respectively. Stars ZSF;L�0:8 fm

V are connected by dashed lines to
guide eyes. Filled triangles at a=L � 0 are ZSF;L�1

V .
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In Fig. 10 we plot ZV as a function of g2. Making a Padé
fit, we obtain

ZSF;L�0:8 fm
V �

1� 0:302 225g2 	 0:011 034g4

1� 0:239 431g2
; (18)

ZSF;L�1
V �

1� 0:365 802g2 	 0:015 016g4

1� 0:303 008g2
; (19)

where we have imposed a constraint that the Padé fits
reproduce the one-loop perturbative result ZV �
1� 0:062 794g2 [16] up to O�g2�.

The range of coupling where there are data for the
vector meson decay constant is marked by the two verti-
cal dashed lines in Fig. 10. Over this range, ZSF;L�1

V
becomes increasingly smaller (by about 8%–21%) com-
pared to the one-loop value (dashed line) and the tadpole-
improved value (crosses). We also observe that ZV exhib-
its a sizable volume dependence toward strong coupling,
e.g., for  � 2:8. This will have an important conse-
quence on the scaling property of f
 as discussed in
Sec. IV.
TABLE II. Z-factors at fixed physical volumes.

 ZSF;L�0:8fm
V ZSF;L�1

V ZSF;L�0:8fm
A ZSF;L�1

A

2.2 0.7495(15) 0.6635(26) 0.7664(52) 0.7033(1221)
2.4 0.7783(05) 0.7309(13) 0.7763(127) 0.6900(409)
2.6 0.8056(05) 0.7847(11) 0.8208(18) 0.7942(39)
2.8 0.8279(02) 0.8180(12) 0.8511(13) 0.8386(22)
3.125 0.8526(01) 0.8488(07) 0.8671(08) 0.8621(42)
4.0 0.8917(02) 0.8904(03) 0.9055(08) 0.9052(10)
6.0 0.9309(02) 0.9308(02) 0.9372(05) 0.9371(05)
8.0 0.9485(01) 0.9485(01) 0.9530(03) 0.9530(03)
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0 1 2 3
2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1−loop

ZV

TP

Pade fits

ZV

SF, L=0.8 fm

ZV

SF, L=∞

ZV

NPC

ZV

FIG. 10. Comparison of ZV from tadpole-improved perturba-
tion theory and those from SF method normalized at
L � 0:8 fm and L � 1. ZNPC

V are determined with the con-
served current. Padé fits and error are also given for ZV from
the SF method. Vertical dashed lines represent the range we
have data for decay constants.
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Another method to estimate ZV nonperturbatively [17]
utilizes the nonrenormalizability of the conserved vector
current

VCi �x� �
1

2
f �x	 a�̂�Uy

x;���i 	 1� �x�

	 �x�Ux;���i � 1� �x	 a�̂�g; (20)
0 1 2 3
g

2

0.5

0.6

0.7

0.8

0.9

1.0

Z
A

1−loop

ZA

TP

Pade fits

ZA

SF, L=0.8 fm

ZA

SF, L=∞

ZA

FIG. 11. Comparison of ZA determined by various methods.
Symbols are the same as in Fig. 10.
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and defines

ZNPC
V � lim

x4!1

P
x
h0jVCi �x; x4�Vij0iP

x
h0jVi�x; x4�Vij0i

: (21)

Results for ZNPC
V obtained for our action combination [1]

are also overlaid in Fig. 10 (open diamonds). They are
much smaller than those from the SF method.We interpret
that the large difference originates from largeO�a� errors
in ZNPC

V . From the viewpoint of O�a� improvement of
operators, the divergence of a tensor operator @�Ti�
should be added to both the local current Vi and the
conserved current VCi [18]. However, the improvement
operator

P
j@jT0j, necessary for V0 in the SF scheme,

automatically drops out since it is a spatial total diver-
gence. In other words, ZV from the SF method is O�a�
improved, whereas ZNPC

V is not.
In Fig. 11, we plot results for ZA and Padé fits which

read

ZSF;L�0:8 fm
A �

1� 0:277 576g2 	 0:008 669g4

1� 0:220 946g2
; (22)

ZSF;L�1
A �

1� 0:334 232g2 	 0:011 710g4

1� 0:277 602g2
: (23)

In the Padé fits, we use a constraint from one-loop per-
turbation theory that ZA � 1� 0:056 630g2 	O�g4� [16].
We observe that ZSF;L�1

A for the range we have data for f�
are smaller than the tadpole-improved value by 6%–14%.

C. Systematic Error from Exceptional Configurations

Exceptional configurations affect Z-factors in two
ways, first by changing the value of mq and hence of �c,
and secondly by directly affecting the value of Z-factors
themselves. Hence, in order to estimate the uncertainties
0 200 400 600 800 1000
fP, cut

−0.004

−0.002

0.000

0.002

0.004

FIG. 12. mq vs fP;cut at �c on an 83 � 16 lattice at  � 2:4.
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FIG. 13. ZV versus mq at  � 2:4 on an 83 � 16 lattice.
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0.78

0.80
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0.86

Z
A

systematic uncertainty in mq at κc

FIG. 14. ZA versus mq at  � 2:4 on an 83 � 16 lattice.
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of Z-factors due to exceptional configurations at large
couplings, we investigate how mq and Z-factors change
if we discard configurations having values of relevant
correlators larger than some cutoff.

Figure 12 shows this test for mq at  � 2:4 for which a
cutoff is set for the value of fP. As the cutoff fP;cut is
increased,mq gradually decreases, becomes almost stable
around fP;cut=300 and then the error ofmq becomes large.
With this observation in mind, we have estimated �c as
the point where mq for fP;cut=300 is consistent with zero,
as shown in Fig. 12. The uncertainty in mq at �c is
estimated by varying fP;cut from 200 to 1000 and turns
out to be 	0:00028>mq >�0:00182. The same proce-
dure at  � 2:2 with fP;cut=500 gives the uncertainty
	0:00344>mq >�0:00170. We note that the number
of configurations discarded is 37 (191) of the total of
10 000 (20 000) configurations at  � 2:4 (2.2).

The uncertainty of mq is translated into uncertainties
of Z-factors. To do this, we carry out two additional
simulations at �’s slightly above and below �c. Figs. 13
and 14 show how Z-factors depend on mq; ZV is very
stable against variation of mq, while ZA shows a more
prominent dependence. We fit the mq dependence of the
Z-factors by a linear function, and uncertainties of
Z-factors are estimated by the difference of the central
value and the maximum/minimum value for the range of
error of mq. The uncertainties are given in Table III under
the column �Zmq .

We also estimate uncertainties in the statistical averag-
ing of Z-factors themselves by varying the cutoff of f1.
TABLE III. Breakdown of systematic unce

�Zmq �Zexcept: �Z

ZV� � 2:2� +0.04%;�0.02% +0.31%, � 0.06% +0.35%, � 0
ZV� � 2:4� +0.01%, � 0.12% +0.08%, � 0.03% +0.09%, � 0
ZA� � 2:2� +3.2%, � 1.5% +18.1%, � 2.1% +21.3%, �
ZA� � 2:4� +0.6%, � 8.0% +6.1%, � 7.3% +6.7%, � 1
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Figure 15 shows the ensemble average of f1 and fV
together with ZV as a function of the cutoff f1;cut.
Though both f1 and fV increase as f1;cut, their ratio ZV
is very stable around f1;cut � 5:0 reflecting the fact that f1
and fV are highly and positively correlated.We determine
the central value from f1;cut � 5:0 and estimate errors by
varying f1;cut � 2:0 to 10.0. Figure 16 shows a similar test
for ZA. The cutoff dependence is more conspicuous than
for ZV . Uncertainties thus estimated are listed in Table III
under the column �Zexcept:. Note that we discard 47 (221)
configurations at  � 2:4 (2.2).

The two uncertainties �Zmq and �Zexcept: are simply
added to estimate the total uncertainty �Z for L=a � 8
lattices. We then propagate them to uncertainties of
Z-factors at fixed physical volume, listed in Table III.
Uncertainties at L � 0:8 fm are smaller than those on
L=a � 8 lattices, because the physical size is located
between L=a � 8 and L=a � 4 lattices. Uncertainties of
Z-factors at L � 1, enlarged by extrapolations, are larger
than the statistical error �Zstat;L�1.

D. Z-factors at Simulation Points for Meson Decay
Constants

For discussions of scaling properties of meson decay
constants, we need Z-factors at values where raw data of
f
 and f� are taken. We evaluate them using the Padé fits
obtained in Sec. III B together with the estimates of
uncertainties from exceptional configurations.

For the latter purpose, we repeat Padé fits varying the
Z-factor at  � 2:4 within the range of its uncertainty,
rtainties in Z-factors. See text for details.

�ZSF;L�0:8fm �ZSF;L�1 �Zstat;L�1

.08% +0.0013%, � 0.0058% +0.75%, � 0.17% 0.39%

.15% +0.044%, � 0.10% +0.19%, � 0.31% 0.18%
3.6% +0.17%, � 0.25% +44.5%, � 8.9% 17%
5.3% +4.0%, � 9.2% +14.6%, � 33.4% 5.9%
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FIG. 15. Ensemble averages of f1, fV and ZV versus f1;cut at
 � 2:4 on an 83 � 16 lattice.
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FIG. 16. Ensemble averages of f1, fAA and ZA versus f1;cut at
 � 2:4 on an 83 � 16 lattice.
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calculate the Z-factor at a target  value, and take the
difference between this value and the central value as an
estimate of the systematic error from exceptional con-
figurations at  � 2:4. The systematic error from those at
 � 2:2 is estimated similarly and added linearly to
obtain the total systematic error.

Our final results for Z-factors at the simulation points
for meson decay constants are listed in Table IV. The
systematic errors in ZSF;L�1

V and ZSF;L�1
A are comparable

to the statistical ones and within at most two  . The ratio
of systematic errors to statistical ones in the table is
slightly smaller than the ratio at simulation points for
Z-factors,  � 2:4 and 2.2, because the Padé fits are
stabilized with data at  � 2.6 where no exceptional
configurations appear. In the table, we reproduce the
one-loop tadpole-improved values ZTPV;A together with
ZNPC
V for comparison.
TABLE IV. Z-factors at simulation

 ZTPV ZSF;L�0:8fm
V ZSF;L�1

V

2.187 0.81657 0:7400�08�	04
�10 0:6488�24�	48

�27 0.45

2.214 0.81923 0:7462�07�	04
�09 0:6651�20�	40

�23 0.4

2.247 0.82237 0:7532�06�	03
�08 0:6825�16�	32

�19 0.50

2.281 0.82548 0:7601�06�	03
�07 0:6981�13�	26

�16 0.52

2.334 0.83009 0:7698�04�	02
�06 0:7187�10�	20

�13 0.5

2.416 0.83673 0:7832�03�	02
�04 0:7441�07�	13

�09 0.5

2.456 0.83978 0:7891�03�	01
�03 0:7544�06�	10

�08 0.60

2.487 0.84205 0:7934�03�	01
�03 0:7617�06�	09

�07 0.64

2.528 0.84496 0:7988�02�	01
�03 0:7705�05�	07

�06 0.64

2.575 0.84816 0:8046�02�	01
�02 0:7796�05�	06

�05 0.66
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IV. SCALING PROPERTIES OF MESON DECAY
CONSTANTS

We investigate the scaling property of f
, combining
the unrenormalized values of f
 [1] and four different
choices of ZV ; 1) one-loop tadpole-improved value, ZTPV ,
2) values determined by the SF method for L � 0:8 fm,
ZSF;L�0:8 fm
V , 3) those at L � 1, ZSF;L�1

V , and 4) ZNPC
V in

Eq. (21) defined by the conserved current. The un-
renormalized f
 was determined in Ref. [1] for unim-
proved current. Hence, the renormalized f
 has O�ag2�
error.

Numerical values of the renormalized f
 are listed in
TableV. Statistical errors in the unrenormalized f
 and in
ZSF;L�0:8 fm
V or ZSF;L�1

V are added in quadrature, while
systematic uncertainties for the latter are simply propa-
points for meson decay constants.

ZNPC
V ZTPA ZSF;L�0:8fm

A ZSF;L�1
A

36(044) 0.83204 0:7712�38�	27
�54 0:7180�146�	125

�236

784(038) 0.83449 0:7762�34�	24
�49 0:7276�127�	109

�203

56(030) 0.83737 0:7819�30�	21
�43 0:7383�108�	093

�171

93(040) 0.84022 0:7875�27�	19
�38 0:7482�092�	080

�143

421(030) 0.84446 0:7956�22�	16
�31 0:7619�073�	063

�111

925(177) 0.85057 0:8068�17�	12
�23 0:7797�052�	045

�076

90(043) 0.85336 0:8118�15�	10
�20 0:7873�045�	038

�064

20(038) 0.85546 0:8155�14�	09
�18 0:7927�040�	034

�056

60(038) 0.85813 0:8201�12�	08
�15 0:7994�034�	029

�047

04(034) 0.86107 0:8250�11�	07
�13 0:8064�029�	024

�039

-9



TABLE V. f
 and f� in GeV with various choices of Z-factors.

 a�1�GeV� f
�ZTPV � f
�Z
SF;L�0:8fm
V � f
�Z

SF;L�1
V � f
�ZNPC

V � f��ZTPA � f��Z
SF;L�0:8fm
A � f��Z

SF;L�1
A �

2.187 1.017(10) 0.2861(44) 0:2593�43�	01
�04 0:2273�43�	17

�09 0.1578(37) 0.1623(42) 0:1504�46�	05
�11 0:1401�65�	24

�46

2.214 0.966(10) 0.2761(38) 0:2515�37�	01
�03 0:2242�38�	13

�08 0.1601(32) 0.1555(37) 0:1446�41�	04
�09 0:1356�56�	20

�38

2.247 0.917(09) 0.2706(37) 0:2478�36�	01
�03 0:2246�36�	11

�06 0.1656(31) 0.1512(41) 0:1412�44�	04
�08 0:1333�56�	17

�31

2.281 0.896(10) 0.2704(38) 0:2490�37�	01
�02 0:2287�36�	09

�05 0.1723(33) 0.1423(33) 0:1334�36�	03
�06 0:1267�45�	14

�24

2.334 0.829(08) 0.2601(30) 0:2412�29�	01
�02 0:2252�29�	06

�04 0.1689(27) 0.1462(41) 0:1377�42�	03
�05 0:1319�50�	11

�19

2.416 0.734(09) 0.2471(54) 0:2313�51�	01
�01 0:2197�50�	04

�03 0.1744(78) 0.1368(39) 0:1298�40�	02
�04 0:1254�44�	07

�12

2.456 0.674(06) 0.2332(44) 0:2191�42�	00
�01 0:2095�41�	03

�02 0.1683(44) 0.1444(39) 0:1374�40�	02
�03 0:1332�44�	06

�11

2.487 0.652(07) 0.2467(42) 0:2324�40�	00
�01 0:2232�40�	03

�02 0.1874(40) 0.1358(36) 0:1295�37�	01
�03 0:1258�40�	05

�09

2.528 0.612(06) 0.2293(45) 0:2168�43�	00
�01 0:2091�42�	02

�02 0.1750(40) 0.1405(47) 0:1343�47�	01
�02 0:1309�49�	05

�08

2.575 0.574(06) 0.2417(37) 0:2293�36�	00
�01 0:2222�35�	02

�01 0.1872(34) 0.1445(53) 0:1384�53�	01
�02 0:1353�55�	04

�06
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gated to that of the renormalized f
. Fortunately, system-
atic uncertainties from exceptional configurations are
sufficiently small. They are at most 0.4 of the statistical
errors and do not affect the conclusions below. Therefore
we ignore systematic uncertainties in the following
discussions.

Figure 17 presents the results for f
 as a function of a.
Open circles are the previous result obtained with
tadpole-improved one-loop Z-factor, which exhibits
a sizable scaling violation. If instead one uses the
nonperturbative ZV for L � 1, we observe a much bet-
ter scaling behavior (filled triangles). The Z-factor eval-
uated for L � 0:8 fm lies in between the two results
(stars).

We find this result very encouraging; it shows that an
apparent large scaling violation seen with the use of ZTPV
0.0 0.2 0.4 0.6 0.8 1.0 1.2
a [GeV

−1
]

150

200

250

300

f ρ
  [

M
eV

]

Improved, with ZV

SF, L=0.8 fm

Improved, with ZV

SF, L=∞

Improved, with ZV

NPC

Improved, with ZV

TP

Standard, with ZV

NPC

FIG. 17. f
 versus a with various choices of ZV . Values for
our improved action with ZTPV and ZNPC

V are taken from Ref. [1].
Values for the standard action [19] are determined with
Z-factors from the conserved current. Diamond at a � 0 rep-
resents the experimental value.
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is largely due to neglecting higher order contributions in
the Z-factor, and that inherent O�a� errors in the vector
decay constant are small even up to a large lattice spacing
of a�1 � 1 GeV.

We extrapolate f
 with ZSF;L�1
V to the continuum limit

linearly in a. The value in the continuum limit
f
 � 201:7�2:0� MeV turns out to be consistent with
that f
 � 205:7�6:6� MeV from a high precision simula-
tion with the standard action [19].

We note that a relatively large scaling violation is
observed for f
 with ZNPC

V (open diamonds). Since f

with ZNPC

V is nothing but the decay constant determined
from the conserved current in Eq. (20), we suspect that
O�a� large scaling violation exists in the conserved
current.

The scaling property of f� is investigated in a similar
manner. We note that the unrenormalized f� in Ref. [1]
was determined for the improved current using a tadpole-
0.0 0.2 0.4 0.6 0.8 1.0 1.2
a [GeV

−1
]

100

120

140

160

180

f π
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SF, L=0.8 fm

Improved, with ZA

SF, L=∞

Improved, with ZA

TP

Standard, with ZA

TP

FIG. 18. f� versus a with various choices of ZA. Symbols are
the same as in Fig. 17, though f� from the standard action is
determined with ZTPA .
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improved one-loop value of cA with MS coupling,
whereas Z-factors in this work employ cA with bare
coupling. The difference in the renormalized f� arising
from the difference of cA remains O�ag4�.

Figure 18 shows f� versus a. In this figure, we have not
included the systematic uncertainty since, being smaller
than statistical one, it does not alter the conclusions
below. Numerical values are listed in Table V. The
conclusions on the scaling behavior are similar to those
of f
. Employing ZSF;L�1

A , which includes terms to
all orders in g2 and does not have O�ag4=L� error, the
scaling behavior turns out to be better than previous
results with tadpole-improved one-loop Z-factor indi-
cated. Making a linear continuum extrapolation, we ob-
tain a value f� � 123:3�8:7� MeV consistent with that
f� � 120:0�5:7� MeV calculated with the standard action
at significantly weaker couplings (open squares).

V. CONCLUSIONS

The Schrödinger functional method has been applied
to calculations of the vector and axial-vector renormal-
ization constants for the combination of a RG-improved
gauge action and a tadpole-improved clover quark action.
With the Z-factors determined nonperturbatively, an ap-
parent large scaling violation in the range of lattice
spacing a�1 � 1� 2 GeV in the meson decay constants
previously observed with the one-loop perturbative
Z-factors is significantly reduced. We conclude that the
improvement attempted with the gluon and quark actions
074502
employed in the present work is effective for the meson
decay constants as well.

We find that scaling of decay constants is best when one
uses Z-factors normalized at infinite volume. This sug-
gests that removing O�ag4=L� error in Z-factors by the
limiting procedure L! 1 is important for actions with
O�ag4� error.

The nonperturbative Z-factors have enabled us to de-
termine values in the continuum limit of decay constants.
We may expect that other hadronic matrix elements are
also reliably extracted from lattice spacings much coarser
than a�1 � 2 GeV for our action combination if one uses
Z-factors determined by the Schrödinger functional
method.

Finally we recall that a large scaling violation for the
meson decay constants has been observed also in two-
flavor full QCD with the same action combination of
quenched QCD considered in this article. A nonpertur-
bative determination of Z-factors will therefore be inter-
esting to pursue for this case. Exceptional configurations
are expected to be absent in full QCD. Therefore the
Schrödinger functional calculation would be more
straightforward. Work in this direction is in progress.
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