1,032 research outputs found

    N,N′-Bis(3,3-dimethyl­all­yl)-N,N′-(prop­ane-1,3-diyl)dibenzene­sulfonamide

    Get PDF
    In the title compound, C25H34N2O4S2, the conformation of the linking N—C—C—C—N chain is gauche-anti [torsion angles = −68.49 (19) and 167.95 (14)°]. The dihedral angle between the aromatic rings is 89.64 (6)°

    N,N′-Diethyl-N,N′-[1,3-phenylene­bis(methyl­ene)]dibenzene­sulfonamide

    Get PDF
    In the title compound, C24H28N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 77.44 (11) and 79.23 (10)°, and the dihedral angle between the pendant rings is 23.31 (12)°. Both sulfonamide groups project to the same side of the central benzene ring and the mol­ecule has approximate non-crystallographic mirror symmetry. One of the ethyl side chains is disordered over two sets of sites in a 0.526 (14):0.474 (14) ratio. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions occur, generating R 2 2(28) loops

    N,N′-Diallyl-2,2′,5,5′-tetra­chloro-N,N′-[1,3-phenyl­enebis(methyl­ene)]dibenzene­sulfonamide

    Get PDF
    In the title compound, C26H24Cl4N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 70.07 (12) and 59.07 (12)°. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C—S—N—C torsion angles [104.66 (17) and −76.35 (19)°] and S—N—C—C torsion angles [129.61 (17) and 147.10 (17)°]. Both N atoms are close to planar (bond angle sums = 359.0 and 354.8°). In the crystal, inversion dimers are formed via a pair of weak C—H⋯O inter­actions which generate R 2 2(22) loops

    Monitoring health status and quality assessment of leaves using terahertz frequency

    Get PDF
    The demand for effective use of water resources has increased due to ongoing global climate transformations in the agriculture science sector. Cost-effective and timely distributions of the appropriate amount of water are vital not only to maintain a healthy status of plants leaves but to drive the productivity of the crops and achieve economic benefits. This paper presents a novel, and non-invasive machine learning (ML) driven approach using terahertz waves with a swissto12 material characterization kit (MCK) in the frequency range of 0.75 to 1.1 THz in real-life digital agriculture interventions, aiming to develop a feasible and viable technique for precise estimation of water content (WC) in plants leaves on different days. For this purpose, multi-domain features are extracted from frequency, time, time-frequency domains using observations data to incorporate three different machine learning algorithms such as support vector machine, (SVM), K-nearest neighbour (KNN) and decision-tree (D-Tree). The results demonstrate SVM outperformed other classifiers using 10-fold and leave-one-observations-out cross-validation for different days classification with an overall accuracy of 98.8%, 97.15%, and 96.82% for coffee, pea-shoot, and spinach leaves respectively. In addition, using SFS technique, coffee showed a significant improvement of 15%, 11.9%, 6.5% in computational time for SVM, KNN and D-tree. For pea-shoot, 21.28%, 10.01%, and 8.53% of improvement was noticed in operating time for SVM, KNN and D-Tree classifiers. Lastly, in baby-spinach leaf, SVM exhibited an upgrade of 21.28%, 10.01%, and 8.53% was noticed in operating time for SVM, KNN and D-Tree classifiers and which eventually enhanced the classification accuracy. Thus, the proposed method incorporating ML using terahertz waves can be beneficial for precise estimation of WC in leaves and can provide prolific recommendations and insights for farmers to take proactive actions in relations to plants health monitoring

    Multisystem inflammatory syndrome (MIS-C) in Pakistani children: A description of the phenotypes and comparison with historical cohorts of children with Kawasaki disease and myocarditis

    Get PDF
    Objectives: To determine clinical, laboratory features and outcomes of Multisystem Inflammatory Syndrome in children (MIS-C) and its comparison with historic Kawasaki Disease (KD) and Viral Myocarditis (VM) cohorts.Methods: All children (1 month- 18 years) who fulfilled the World Health Organization criteria of MIS-C presenting to two tertiary care centers in Karachi from May 2020 till August 31st were included. KD and VM admitted to one of the study centers in the last five years prior to this pandemic, was compared to MIS-C.Results: Thirty children with median age of 24 (interquartile range (IQR)1-192) months met the criteria for MIS-C. Three phenotypes were identified, 12 patients (40%) with KD, ten (33%) VM and eight (26%) had features of TSS. Echocardiography showed coronary involvement in 10 (33%), and moderate to severe Left Ventricular dysfunction in 10 (33%) patients. Steroids and intravenous immunoglobulins (IVIG) were administered to 24 (80%) and 12 (41%) patients respectively while 7 (23%) received both. Overall, 20% children expired. During the last five years, 30 and 47 children were diagnosed with KD and VM, respectively. Their comparison with MIS-C group showed lymphopenia, thrombocytosis, and higher CRP as well as more frequent atypical presentation in MIS-C KD group with less coronary involvement. The MIS-C VM was more likely to present with fulminant myocarditis.Conclusions: Our MIS-C cohort is younger with higher mortality compared to previous reports. MIS-C is distinct from historic cohorts of KD and VM in both in clinical features and outcomes

    Correction to: Transmission dynamics and control of two epidemic waves of SARS-CoV-2 in South Korea

    Get PDF
    Background After relaxing social distancing measures, South Korea experienced a resurgent second epidemic wave of coronavirus disease 2019 (COVID-19). In this study, we aimed to identify the transmission dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and assess the impact of COVID-19 case finding and contact tracing in each epidemic wave. Methods We collected data on COVID-19 cases published by local public health authorities in South Korea and divided the study into two epidemic periods (19 January–19 April 2020 for the first epidemic wave and 20 April–11 August 2020 for the second epidemic wave). To identify changes in the transmissibility of SARS-CoV-2, the daily effective reproductive number (Rt) was estimated using the illness onset of the cases. Furthermore, to identify the characteristics of each epidemic wave, frequencies of cluster types were measured, and age-specific transmission probability matrices and serial intervals were estimated. The proportion of asymptomatic cases and cases with unknown sources of infection were also estimated to assess the changes of infections identified as cases in each wave. Results In early May 2020, within 2-weeks of a relaxation in strict social distancing measures, Rt increased rapidly from 0.2 to 1.8 within a week and was around 1 until early July 2020. In both epidemic waves, the most frequent cluster types were religious-related activities and transmissions among the same age were more common. Furthermore, children were rarely infectors or infectees, and the mean serial intervals were similar (~ 3 days) in both waves. The proportion of asymptomatic cases at presentation increased from 22% (in the first wave) to 27% (in the second wave), while the cases with unknown sources of infection were similar in both waves (22 and 24%, respectively). Conclusions Our study shows that relaxing social distancing measures was associated with increased SARS-CoV-2 transmission despite rigorous case findings in South Korea. Along with social distancing measures, the enhanced contact tracing including asymptomatic cases could be an efficient approach to control further epidemic waves.This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Korean Ministry of Education (NRF-2020R1I1A3066471). The funder of the study had no role in study design, analysis, interpretation of the data, or writing of the report

    Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure

    Get PDF
    Background and aims: Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Here we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. / Material and Methods: Circulating TLR4 ligands and hepatic TLR4 expression was measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo with 10mg/Kg, i.p. in rodent models of ACLF (bile duct ligation + lipopolysaccharide (LPS); carbontetrachloride + LPS) and ALF (Galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5).. The in vivo therapeutic effect was assessed by coma free survival, organ injury and cytokine release and in vitro by measuring IL6, IL1b or cell injury (TUNEL), respectively. / Results: In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p<0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS induced cytokine secretion and cell death (p=0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma free survival, reduced the degree of hepatocyte cell death in liver p<0.001) and kidneys (p=0.048) and reduced circulating cytokine levels (IL1b p<0.001). In a rodent model of ALF TAK-242 prevented organ injury (p<0.001) and systemic inflammation (IL1b p<0.001). / Conclusion: This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF and its inhibition improves severity of organ injury and outcome. TAK-242 may be of therapeutic relevance in patients with liver failure

    Monitoring Health Status and Quality Assessment of Leaves Using Terahertz Frequency

    Get PDF
    This paper presents a new and non-invasive electromagnetic technique that utilizes the terahertz frequency waves to monitor the plant health. To do so, the water content of a plant leaf is obtained using the measured scattering response in the frequency range of 0.75 to 1.1 THz. Leaves of three commonly used herbs were observed for four consecutive days and the electromagnetic material parameters such as the permittivity were extracted using a material characterization algorithm. The decreasing moisture level and in turn the plant health can therefore be directly inferred from the leaf permittivity which approaches to that of free space with the passage of days
    corecore