204 research outputs found
Factorization of correlations in two-dimensional percolation on the plane and torus
Recently, Delfino and Viti have examined the factorization of the three-point
density correlation function P_3 at the percolation point in terms of the
two-point density correlation functions P_2. According to conformal invariance,
this factorization is exact on the infinite plane, such that the ratio R(z_1,
z_2, z_3) = P_3(z_1, z_2, z_3) [P_2(z_1, z_2) P_2(z_1, z_3) P_2(z_2,
z_3)]^{1/2} is not only universal but also a constant, independent of the z_i,
and in fact an operator product expansion (OPE) coefficient. Delfino and Viti
analytically calculate its value (1.022013...) for percolation, in agreement
with the numerical value 1.022 found previously in a study of R on the
conformally equivalent cylinder. In this paper we confirm the factorization on
the plane numerically using periodic lattices (tori) of very large size, which
locally approximate a plane. We also investigate the general behavior of R on
the torus, and find a minimum value of R approx. 1.0132 when the three points
are maximally separated. In addition, we present a simplified expression for R
on the plane as a function of the SLE parameter kappa.Comment: Small corrections (final version). In press, J. Phys.
Numerical studies of planar closed random walks
Lattice numerical simulations for planar closed random walks and their
winding sectors are presented. The frontiers of the random walks and of their
winding sectors have a Hausdorff dimension . However, when properly
defined by taking into account the inner 0-winding sectors, the frontiers of
the random walks have a Hausdorff dimension .Comment: 15 pages, 15 figure
Boundary conformal field theories and loop models
We propose a systematic method to extract conformal loop models for rational
conformal field theories (CFT). Method is based on defining an ADE model for
boundary primary operators by using the fusion matrices of these operators as
adjacency matrices. These loop models respect the conformal boundary
conditions. We discuss the loop models that can be extracted by this method for
minimal CFTs and then we will give dilute O(n) loop models on the square
lattice as examples for these loop models. We give also some proposals for WZW
SU(2) models.Comment: 23 Pages, major changes! title change
Perceived barriers and facilitators to mental health help-seeking in young people: a systematic review
<p>Abstract</p> <p>Background</p> <p>Adolescents and young adults frequently experience mental disorders, yet tend not to seek help. This systematic review aims to summarise reported barriers and facilitators of help-seeking in young people using both qualitative research from surveys, focus groups, and interviews and quantitative data from published surveys. It extends previous reviews through its systematic research methodology and by the inclusion of published studies describing what young people themselves perceive are the barriers and facilitators to help-seeking for common mental health problems.</p> <p>Methods</p> <p>Twenty two published studies of perceived barriers or facilitators in adolescents or young adults were identified through searches of PubMed, PsycInfo, and the Cochrane database. A thematic analysis was undertaken on the results reported in the qualitative literature and quantitative literature.</p> <p>Results</p> <p>Fifteen qualitative and seven quantitative studies were identified. Young people perceived stigma and embarrassment, problems recognising symptoms (poor mental health literacy), and a preference for self-reliance as the most important barriers to help-seeking. Facilitators were comparatively under-researched. However, there was evidence that young people perceived positive past experiences, and social support and encouragement from others as aids to the help-seeking process.</p> <p>Conclusions</p> <p>Strategies for improving help-seeking by adolescents and young adults should focus on improving mental health literacy, reducing stigma, and taking into account the desire of young people for self-reliance.</p
Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees
email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The Australasian COVID-19 Trial (ASCOT) to assess clinical outcomes in hospitalised patients with SARS-CoV-2 infection (COVID-19) treated with lopinavir/ritonavir and/or hydroxychloroquine compared to standard of care: A structured summary of a study protocol for a randomised controlled trial
Objectives: To determine if lopinavir/ritonavir +/- hydroxychloroquine will reduce the proportion of participants who survive without requiring ventilatory support, 15 days after enrolment, in adult participants with non-critically ill SARS-CoV-2 infection.
Trial design: ASCOT is an investigator-initiated, multi-centre, open-label, randomised controlled trial. Participants will have been hospitalised with confirmed COVID-19, and will be randomised 1:1:1:1 to receive lopinavir /ritonavir, hydroxychloroquine, both or neither drug in addition to standard of care management.
Participants: Participants will be recruited from >80 hospitals across Australia and New Zealand, representing metropolitan and regional centres in both public and private sectors. Admitted patients will be eligible if aged ≥ 18 years, have confirmed SARS-CoV-2 by nucleic acid testing in the past 12 days and are expected to remain an inpatient for at least 48 hours from the time of randomisation. Potentially eligible participants will be excluded if admitted to intensive care or requiring high level respiratory support, are currently receiving study drugs or their use is contraindicated due to allergy, drug interaction or comorbidities (including baseline QTc prolongation of 470ms for women or 480ms for men), or death is anticipated imminently
A framework for the first‑person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila
Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception
- …